
(c) Christoph Steindl Unit Test Recipes 1

Testing and JDBC

Ralf Goller
Christian Hochhold
Andreas Jagersberger
Martin Luksch

(c) Christoph Steindl Unit Test Recipes 2

Content
Introduction
Test making domain objects from a ResultSet
Verify your SQL Commands
Test your database schema
Verify your tests clean up JDBC resources
Testing Stored Procedures
Manage external data in the test fixture
Testing business logic isolated from Databases
Testing persistence code isolated from Databases
Writing Database integration tests
Running the Cactus test using Ant
Tuning for build performance
Summary

(c) Christoph Steindl Unit Test Recipes 3

Content
Introduction
Test making domain objects from a ResultSet
Verify your SQL Commands
Test your database schema
Verify your tests clean up JDBC resources
Testing Stored Procedures
Manage external data in the test fixture
Testing business logic isolated from Databases
Testing persistence code isolated from Databases
Writing Database integration tests
Running the Cactus test using Ant
Tuning for build performance
Summary

(c) Christoph Steindl Unit Test Recipes 4

Introduction
JDBC is a database connector
Article by Richard Dallaway
„Unit Testing Database Code“
4 types of databases:

production
local development
populated development
development or integration

(c) Christoph Steindl Unit Test Recipes 5

Introduction
database access in code problems

execution time
code duplication

database access by using
query builder
query executer

No more testing JDBC provider.
Test your code!

(c) Christoph Steindl Unit Test Recipes 6

Content
Introduction
Test making domain objects from a ResultSet
Verify your SQL Commands
Test your database schema
Verify your tests clean up JDBC resources
Testing Stored Procedures
Manage external data in the test fixture
Testing business logic isolated from Databases
Testing persistence code isolated from Databases
Writing Database integration tests
Running the Cactus test using Ant
Tuning for build performance
Summary

(c) Christoph Steindl Unit Test Recipes 7

Test making domain objects from a ResultSet

Two things can go wrong when executing a query
with JDBC:

wrong SQL Command
unmarshal data into objects incorrect

(c) Christoph Steindl Unit Test Recipes 8

Test making domain objects from a ResultSet
unmarshal data into objects incorrect
create a resultSet object with known data , then
invoke “make domain objects” method and
compare the result with the expected values
JDBC has no standalone implementation of
ResultSets, therefore mock objects are used.

MockMultiRowResultSet
MockSingleRowResultSet

(c) Christoph Steindl Unit Test Recipes 9

Content
Introduction
Test making domain objects from a ResultSet
Verify your SQL Commands
Test your database schema
Verify your tests clean up JDBC resources
Testing Stored Procedures
Manage external data in the test fixture
Testing business logic isolated from Databases
Testing persistence code isolated from Databases
Writing Database integration tests
Running the Cactus test using Ant
Tuning for build performance
Summary

(c) Christoph Steindl Unit Test Recipes 10

Verify your SQL Commands

“Best way to verify is to try them out a few times”

“Golden Master”: verify test unmarshalby hand
and use as a baseline for future tests.

assertEquals(
“insert into catalog.beans “
+ “(productID, coffeeName, unitPrice) values “
+ “(?,?,?)”,
store.getAddProductSqlString());

(c) Christoph Steindl Unit Test Recipes 11

Verify your SQL Commands

externalize SQL Commands to a file.

if db schema changes you have to change just
one single file and rerun tests.

(c) Christoph Steindl Unit Test Recipes 12

Content
Introduction
Test making domain objects from a ResultSet
Verify your SQL Commands
Test your database schema
Verify your tests clean up JDBC resources
Testing Stored Procedures
Manage external data in the test fixture
Testing business logic isolated from Databases
Testing persistence code isolated from Databases
Writing Database integration tests
Running the Cactus test using Ant
Tuning for build performance
Summary

(c) Christoph Steindl Unit Test Recipes 13

Test your database schema
verify nullable columns, indices, foreign key

constraint and triggers

2 ways of testing:
make assertions on database meta data
performing queries and check results

(c) Christoph Steindl Unit Test Recipes 14

Test your database schema
make assertions on database meta data

dbmetadata = connection.getMetaData();
schemaRS = dbmetadata.getSchemas();
schemaNames = new LinkedList();
//fetch in list
assertTrue(schemaNames.contains(“CATALOG”);

verified that there is a CATALOG schema in the
database

(c) Christoph Steindl Unit Test Recipes 15

Test your database schema
running test against a live database
to achieve test isolation db has to be cleaned

before each test.
2 consequences:

Table dependencies grow quickly, because of
foreign keys the order in which tables can be
delete is important
The database is an exclusive external resource,
the more test you run against the db, the slower
testing gets.

(c) Christoph Steindl Unit Test Recipes 16

Content
Introduction
Test making domain objects from a ResultSet
Verify your SQL Commands
Test your database schema
Verify your tests clean up JDBC resources
Testing Stored Procedures
Manage external data in the test fixture
Testing business logic isolated from Databases
Testing persistence code isolated from Databases
Writing Database integration tests
Running the Cactus test using Ant
Tuning for build performance
Summary

(c) Christoph Steindl Unit Test Recipes 17

Verify your tests clean up JDBC resources
avoid leaking resources by ensuring that tests clean up

themselves.
checklist:

create the data source in setUp() method
allocate connections in setUp()
create collection in setUp() to store result sets,
statements and connections – one collection for each
kind of resource
if you create a JDBC resource in the test, add it to the
collection
in tearDown() method, invoke close() to all resources of
the collections

(c) Christoph Steindl Unit Test Recipes 18

Content
Introduction
Test making domain objects from a ResultSet
Verify your SQL Commands
Test your database schema
Verify your tests clean up JDBC resources
Testing Stored Procedures
Manage external data in the test fixture
Testing business logic isolated from Databases
Testing persistence code isolated from Databases
Writing Database integration tests
Running the Cactus test using Ant
Tuning for build performance
Summary

(c) Christoph Steindl Unit Test Recipes 19

Testing Stored Procedures

You need to test stored Procedures against a
live database
Use shell scripts. JUnit is too verbose for such a
simple task.
Verify that stored procedures are invoked by
using Mock objects.

(c) Christoph Steindl Unit Test Recipes 20

Content
Introduction
Test making domain objects from a ResultSet
Verify your SQL Commands
Test your database schema
Verify your tests clean up JDBC resources
Testing Stored Procedures
Manage external data in the test fixture
Testing business logic isolated from Databases
Testing persistence code isolated from Databases
Writing Database integration tests
Running the Cactus test using Ant
Tuning for build performance
Summary

(c) Christoph Steindl Unit Test Recipes 21

Manage external data in the test fixture

Testing against a database can bring it in a
different state.
Add or remove data for each test individually.
To reach the goal:

setUp() connects to the database and prime it with
data
tearDown() deletes all data from the Database

(c) Christoph Steindl Unit Test Recipes 22

Content
Introduction
Test making domain objects from a ResultSet
Verify your SQL Commands
Test your database schema
Verify your tests clean up JDBC resources
Testing Stored Procedures
Manage external data in the test fixture
Testing business logic isolated from Databases
Testing persistence code isolated from Databases
Writing Database integration tests
Running the Cactus test using Ant
Tuning for build performance
Summary

(c) Christoph Steindl Unit Test Recipes 23

Unit tests for DBapplications
Business Logic Layer

Business Logic
DataAccessManager dam;

[...]
execute(sqlString)

- fetches parameters for query
- brings parameters together
- builds a SQL-query

(c) Christoph Steindl Unit Test Recipes 24

Unit tests for DBapplications
Persistence Layer

Business Logic
DataAccessManager dam;

[...]
execute(sqlString)

Data Access Manager
Connection con;

[...]
executeQuery(con,sql)

- opens a connection (e.g.JDBC)
- sends query & receives result set
- closes connection

(c) Christoph Steindl Unit Test Recipes 25

Unit tests for DBapplications
Database Layer

Business Logic
DataAccessManager dam;

[...]
execute(sqlString)

Data Access Manager
Connection con;

[...]
executeQuery(con,sql)

- executes queries, triggers,
stored procedures etc.

- returns result set
Database

(c) Christoph Steindl Unit Test Recipes 26

Unit tests for DBapplications
Business Logic Layer Test

Business Logic
DataAccessManager dam;

[...]
execute(sqlString)

Data Access Manager
Connection con;

[...]
executeQuery(con,sql)

Logic
Test

Database

(c) Christoph Steindl Unit Test Recipes 27

Unit tests for DBapplications
Business Logic Layer Test

Business Logic
DataAccessManagerIF dam;

[...]
execute(sqlString)

Data Access Manager
Connection con;

[...]
executeQuery(con,sql)

Logic
Test

Database

(c) Christoph Steindl Unit Test Recipes 28

Unit tests for DBapplications
Business Logic Layer Test

Business Logic
DataAccessManagerIF dam;

[...]
execute(sqlString)

Data Access Manager
Connection con;

[...]
executeQuery(con,sql)

<<DataAccessManagerIF>>

executeQuery (con, sql);

Logic
Test

Database

(c) Christoph Steindl Unit Test Recipes 29

Unit tests for DBapplications
Business Logic Layer Test

Business Logic
DataAccessManagerIF dam;

[...]
execute(sqlString)

Data Access Manager
Connection con;

[...]
executeQuery(con,sql)

<<DataAccessManagerIF>>

executeQuery (con, sql);

Logic
Test

MockDataAccessManager
ResultSet rs = [...]
executeQuery (con, sql)
{return rs;}

Database

(c) Christoph Steindl Unit Test Recipes 30

Unit tests for DBapplications
Business Logic Layer Test

Database

Data Access Manager
Connection con;

[...]
executeQuery(con,sql)

MockDataAccessManager
ResultSet rs = [...]
executeQuery (con, sql)
{return rs;}

Alternatives:
-Logic constructor accepts DAM-Interface as parameter
-Subclass of Logic class overriding execute-method
-DAM as parameter of application (e.g. in web.xml)

Business Logic
setDataAccessManager
(DataAccessManagerIF dam){...}
execute(sqlString)

<<DataAccessManagerIF>>

executeQuery (con, sql);

Logic
Test

(c) Christoph Steindl Unit Test Recipes 31

Content
Introduction
Test making domain objects from a ResultSet
Verify your SQL Commands
Test your database schema
Verify your tests clean up JDBC resources
Testing Stored Procedures
Manage external data in the test fixture
Testing business logic isolated from Databases
Testing persistence code isolated from Databases
Writing Database integration tests
Running the Cactus test using Ant
Tuning for build performance
Summary

(c) Christoph Steindl Unit Test Recipes 32

Unit tests for DBapplications
Persistence Layer Test

Business Logic
DataAccessManager dam;

[...]
execute(sqlString)

Data Access Manager
Connection con;

[...]
executeQuery(con,sql)

Persistence
Test

Database

(c) Christoph Steindl Unit Test Recipes 33

Unit tests for DBapplications
Persistence Layer Test

Business Logic
DataAccessManager dam;

[...]
execute(sqlString)

Data Access Manager
Connection con;

[...]
executeQuery(con,sql)

Persistence
Test

Database

MockJNDIDataSource

(c) Christoph Steindl Unit Test Recipes 34

Unit tests for DBapplications
Persistence Layer Test

Business Logic
DataAccessManager dam;

[...]
execute(sqlString)

Data Access Manager
Connection con;

[...]
executeQuery(con,sql)

Persistence
Test

Database

MockJNDIDataSource

MockConnection

(c) Christoph Steindl Unit Test Recipes 35

Unit tests for DBapplications
Persistence Layer Test

Business Logic
DataAccessManager dam;

[...]
execute(sqlString)

Data Access Manager
Connection con;

[...]
executeQuery(con,sql)

Persistence
Test MockJNDIDataSource

Database
MockConnection

MockResultSet

(c) Christoph Steindl Unit Test Recipes 36

Unit tests for DBapplications
Persistence Layer Test

Business Logic
DataAccessManager dam;

[...]
execute(sqlString)

Data Access Manager
Connection con;

[...]
executeQuery(con,sql)

Database
MockResultSetMetaInfo

Persistence
Test MockJNDIDataSource

MockConnection

MockResultSet

(c) Christoph Steindl Unit Test Recipes 37

Unit tests for DBapplications
Persistence Layer Test

Business Logic
DataAccessManager dam;

[...]
execute(sqlString)

Data Access Manager
Connection con;

[...]
executeQuery(con,sql)

Database

MockJNDIDataSource

MockConnection

MockResultSetMetaInfo

Solutions:

- intimate knowledge of source
- mock at different level

Persistence
Test

MockResultSet

(c) Christoph Steindl Unit Test Recipes 38

Content
Introduction
Verify your SQL Commands
Test your database schema
Verify your tests clean up JDBC resources
Testing Stored Procedures
Testing Stored Procedures
Manage external data in the test fixture
Testing business logic isolated from Databases
Testing persistence code isolated from Databases
Writing Database integration tests
Running the Cactus test using Ant
Tuning for build performance
Summary

(c) Christoph Steindl Unit Test Recipes 39

Unit tests for DBapplications
Database Layer – integration tests

Business Logic
DataAccessManager dam;

[...]
execute(sqlString)

Data Access Manager
Connection con;

[...]
executeQuery(con,sql)

Integration Test

Database

(c) Christoph Steindl Unit Test Recipes 40

Unit tests for DBapplications
Database Layer – integration tests

Business Logic
DataAccessManager dam;

[...]
execute(sqlString)

Data Access Manager
Connection con;

[...]
executeQuery(con,sql)

Integration Test

setUp (){
//fill Test Data
//manually into DB
}
[...]
tearDown (){
//delete Test Data
} Database

(c) Christoph Steindl Unit Test Recipes 41

Unit tests for DBapplications
Database Layer – integration tests

Business Logic
DataAccessManager dam;

[...]
execute(sqlString)

Data Access Manager
Connection con;

[...]
executeQuery(con,sql)

Integration Test

xml

Database

(c) Christoph Steindl Unit Test Recipes 42

Unit tests for DBapplications
Mocking Frameworks:

EasyMock: http://www.easymock.org/

DynaMock: http://www.mockobjects.com/DynaMock.html

MockObjects: http://sourceforge.net/projects/mockobjects

- Predefined MockObjects like ResultsetMock, StatementMock,...
- Predefined mechanism for expectations

MockObject.addExpectedXXX [MockConnection.addExpectedQuery(String qy)]
MockObject.setExpectedXXX [MockConnection.setExpectedCloseCalls(1)]

- Cactus: http://jakarta.apache.org/cactus/
- DBUnit: http://dbunit.sourceforge.net/

DB integration test Frameworks:

(c) Christoph Steindl Unit Test Recipes 43

Content
Introduction
Test making domain objects from a ResultSet
Verify your SQL Commands
Test your database schema
Verify your tests clean up JDBC resources
Testing Stored Procedures
Manage external data in the test fixture
Testing business logic isolated from Databases
Testing persistence code isolated from Databases
Writing Database integration tests
Running the Cactus test using Ant
Tuning for build performance
Summary

(c) Christoph Steindl Unit Test Recipes 44

Running the Cactus test using Ant
Cactus is a simple test framework for unit
testing server-side java code
uses JUnit and extends it
Cactus/Ant integration module
Ant build file

http://jakarta.apache.org/cactus

(c) Christoph Steindl Unit Test Recipes 45

Content
Introduction
Test making domain objects from a ResultSet
Verify your SQL Commands
Test your database schema
Verify your tests clean up JDBC resources
Testing Stored Procedures
Manage external data in the test fixture
Testing business logic isolated from Databases
Testing persistence code isolated from Databases
Writing Database integration tests
Running the Cactus test using Ant
Tuning for build performance
Summary

(c) Christoph Steindl Unit Test Recipes 46

Tuning for build performance
strategies

Factor out read-only data
Grouping test in functional test suites
Using an in-memory database

Overall database unit-testing strategy
Mock objects, functional testing
Mock objects, database integration unit tests,
functional tests

(c) Christoph Steindl Unit Test Recipes 47

Content
Introduction
Test making domain objects from a ResultSet
Verify your SQL Commands
Test your database schema
Verify your tests clean up JDBC resources
Testing Stored Procedures
Manage external data in the test fixture
Testing business logic isolated from Databases
Testing persistence code isolated from Databases
Writing Database integration tests
Running the Cactus test using Ant
Tuning for build performance
Summary

(c) Christoph Steindl Unit Test Recipes 48

Summary
No more testing JDBC provider.
Test your code!

	Testing and JDBC
	Content
	Content
	Introduction
	Introduction
	Content
	Test making domain objects from a ResultSet
	Test making domain objects from a ResultSet
	Content
	Verify your SQL Commands
	Verify your SQL Commands
	Content
	Test your database schema
	Test your database schema
	Test your database schema
	Content
	Verify your tests clean up JDBC resources
	Content
	Testing Stored Procedures
	Content
	Manage external data in the test fixture
	Content
	Unit tests for DBapplications
	Unit tests for DBapplications
	Unit tests for DBapplications
	Unit tests for DBapplications
	Unit tests for DBapplications
	Unit tests for DBapplications
	Unit tests for DBapplications
	Unit tests for DBapplications
	Content
	Content
	Unit tests for DBapplications
	Unit tests for DBapplications
	Unit tests for DBapplications
	Unit tests for DBapplications
	Content
	Running the Cactus test using Ant
	Content
	Tuning for build performance
	Content
	Summary

