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Introduction
JDBC is a database connector
Article by Richard Dallaway
„Unit Testing Database Code“
4 types of databases:

production
local development
populated development
development or integration



(c) Christoph Steindl Unit Test Recipes 5

Introduction
database access in code problems

execution time
code duplication

database access by using 
query builder
query executer

No more testing JDBC provider.
Test your code!
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Test making domain objects from a ResultSet

Two things can go wrong when executing a query 
with JDBC:

wrong SQL Command
unmarshal data into objects incorrect
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Test making domain objects from a ResultSet
unmarshal data into objects incorrect
create a resultSet object with known data , then 
invoke “make domain objects” method and 
compare the result with the expected values
JDBC has no standalone implementation of 
ResultSets, therefore mock objects are used.

MockMultiRowResultSet
MockSingleRowResultSet
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Verify your SQL Commands

“Best way to verify is to try them out a few times”

“Golden Master”: verify  test unmarshalby hand 
and use as a baseline for future tests.

assertEquals(
“insert into catalog.beans “
+ “(productID, coffeeName, unitPrice) values “
+ “(?,?,?)”,
store.getAddProductSqlString());
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Verify your SQL Commands

externalize SQL Commands to a file.

if db schema changes you have to change just 
one single file and rerun tests.
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Test your database schema
verify nullable columns, indices, foreign key 

constraint and triggers

2 ways of testing:
make assertions on database meta data
performing queries  and check results
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Test your database schema
make assertions on database meta data

dbmetadata = connection.getMetaData();
schemaRS = dbmetadata.getSchemas();
schemaNames = new LinkedList();
//fetch in list
assertTrue(schemaNames.contains(“CATALOG”);

verified that there is a CATALOG schema in the 
database
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Test your database schema
running test against a live database 
to achieve test isolation db has to be cleaned 

before each test.
2 consequences:

Table dependencies grow quickly, because of 
foreign keys the order in which tables can be 
delete is important
The database is an exclusive external resource, 
the more test you run against the db, the slower 
testing gets. 
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Verify your tests clean up JDBC resources
avoid leaking resources by ensuring that tests clean up 

themselves.
checklist:

create the data source in setUp() method
allocate connections in setUp()
create collection in setUp() to store result sets, 
statements and connections – one collection for each 
kind of resource
if you create a JDBC resource in the test, add it to the 
collection
in tearDown() method, invoke close() to all resources of 
the collections
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Testing Stored Procedures

You need to test stored Procedures against a 
live database 
Use shell scripts. JUnit is too verbose for such a 
simple task.
Verify that stored procedures are invoked by 
using Mock objects.
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Manage external data in the test fixture

Testing against a database can bring it in a 
different state.
Add or remove data for each test individually.
To reach the goal:

setUp() connects to the database and prime it with
data
tearDown() deletes all data from the Database
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Unit tests for DBapplications
Business Logic Layer

Business Logic
DataAccessManager dam; 

[...]
execute(sqlString)

- fetches parameters for query
- brings parameters together
- builds a SQL-query
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Unit tests for DBapplications
Persistence Layer

Business Logic
DataAccessManager dam; 

[...]
execute(sqlString)

Data Access Manager
Connection con; 

[...]
executeQuery(con,sql)

- opens a connection (e.g.JDBC)
- sends query & receives result set
- closes connection
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Unit tests for DBapplications
Database Layer

Business Logic
DataAccessManager dam; 

[...]
execute(sqlString)

Data Access Manager
Connection con; 

[...]
executeQuery(con,sql)

- executes queries, triggers, 
stored procedures etc.

- returns result set
Database
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Unit tests for DBapplications
Business Logic Layer Test

Business Logic
DataAccessManager dam; 

[...]
execute(sqlString)

Data Access Manager
Connection con; 

[...]
executeQuery(con,sql)

Logic
Test

Database



(c) Christoph Steindl Unit Test Recipes 27

Unit tests for DBapplications
Business Logic Layer Test

Business Logic
DataAccessManagerIF dam; 

[...]
execute(sqlString)

Data Access Manager
Connection con; 

[...]
executeQuery(con,sql)

Logic
Test

Database
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Unit tests for DBapplications
Business Logic Layer Test

Business Logic
DataAccessManagerIF dam; 

[...]
execute(sqlString)

Data Access Manager
Connection con; 

[...]
executeQuery(con,sql)

<<DataAccessManagerIF>>

executeQuery (con, sql);

Logic
Test

Database
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Unit tests for DBapplications
Business Logic Layer Test

Business Logic
DataAccessManagerIF dam; 

[...]
execute(sqlString)

Data Access Manager
Connection con; 

[...]
executeQuery(con,sql)

<<DataAccessManagerIF>>

executeQuery (con, sql);

Logic
Test

MockDataAccessManager
ResultSet rs = [...]
executeQuery (con, sql)
{return rs;}

Database
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Unit tests for DBapplications
Business Logic Layer Test

Database

Data Access Manager
Connection con; 

[...]
executeQuery(con,sql)

MockDataAccessManager
ResultSet rs = [...]
executeQuery (con, sql)
{return rs;}

Alternatives:
-Logic constructor accepts DAM-Interface as parameter
-Subclass of Logic class overriding execute-method
-DAM as parameter of application (e.g. in web.xml)

Business Logic
setDataAccessManager
(DataAccessManagerIF dam){...}
execute(sqlString)

<<DataAccessManagerIF>>

executeQuery (con, sql);

Logic
Test
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Unit tests for DBapplications
Persistence Layer Test

Business Logic
DataAccessManager dam; 

[...]
execute(sqlString)

Data Access Manager
Connection con; 

[...]
executeQuery(con,sql)

Persistence
Test

Database
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Unit tests for DBapplications
Persistence Layer Test

Business Logic
DataAccessManager dam; 

[...]
execute(sqlString)

Data Access Manager
Connection con; 

[...]
executeQuery(con,sql)

Persistence
Test

Database

MockJNDIDataSource
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Unit tests for DBapplications
Persistence Layer Test

Business Logic
DataAccessManager dam; 

[...]
execute(sqlString)

Data Access Manager
Connection con; 

[...]
executeQuery(con,sql)

Persistence
Test

Database

MockJNDIDataSource

MockConnection
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Unit tests for DBapplications
Persistence Layer Test

Business Logic
DataAccessManager dam; 

[...]
execute(sqlString)

Data Access Manager
Connection con; 

[...]
executeQuery(con,sql)

Persistence
Test MockJNDIDataSource

Database
MockConnection

MockResultSet



(c) Christoph Steindl Unit Test Recipes 36

Unit tests for DBapplications
Persistence Layer Test

Business Logic
DataAccessManager dam; 

[...]
execute(sqlString)

Data Access Manager
Connection con; 

[...]
executeQuery(con,sql)

Database
MockResultSetMetaInfo

Persistence
Test MockJNDIDataSource

MockConnection

MockResultSet
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Unit tests for DBapplications
Persistence Layer Test

Business Logic
DataAccessManager dam; 

[...]
execute(sqlString)

Data Access Manager
Connection con; 

[...]
executeQuery(con,sql)

Database

MockJNDIDataSource

MockConnection

MockResultSetMetaInfo

Solutions:

- intimate knowledge of source
- mock at different level

Persistence
Test

MockResultSet
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Unit tests for DBapplications
Database Layer – integration tests

Business Logic
DataAccessManager dam; 

[...]
execute(sqlString)

Data Access Manager
Connection con; 

[...]
executeQuery(con,sql)

Integration Test

Database
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Unit tests for DBapplications
Database Layer – integration tests

Business Logic
DataAccessManager dam; 

[...]
execute(sqlString)

Data Access Manager
Connection con; 

[...]
executeQuery(con,sql)

Integration Test

setUp (){          
//fill Test Data
//manually into DB
}                  
[...]              
tearDown (){       
//delete Test Data
}                  Database
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Unit tests for DBapplications
Database Layer – integration tests

Business Logic
DataAccessManager dam; 

[...]
execute(sqlString)

Data Access Manager
Connection con; 

[...]
executeQuery(con,sql)

Integration Test

xml

Database
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Unit tests for DBapplications
Mocking Frameworks:

EasyMock: http://www.easymock.org/

DynaMock: http://www.mockobjects.com/DynaMock.html

MockObjects: http://sourceforge.net/projects/mockobjects

- Predefined MockObjects like ResultsetMock, StatementMock,...
- Predefined mechanism for expectations

MockObject.addExpectedXXX [MockConnection.addExpectedQuery(String qy)]
MockObject.setExpectedXXX [MockConnection.setExpectedCloseCalls(1)]

- Cactus: http://jakarta.apache.org/cactus/
- DBUnit: http://dbunit.sourceforge.net/

DB integration test Frameworks:
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Running the Cactus test using Ant
Cactus is a simple test framework for unit
testing server-side java code
uses JUnit and extends it
Cactus/Ant integration module
Ant build file

http://jakarta.apache.org/cactus
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Tuning for build performance
strategies

Factor out read-only data
Grouping test in functional test suites
Using an in-memory database

Overall database unit-testing strategy
Mock objects, functional testing
Mock objects, database integration unit tests, 
functional tests
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Summary
No more testing JDBC provider.
Test your code!
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