
SEMANTICS WITH APPLICATIONSA Formal IntrodutionHanne Riis Nielson Flemming Nielson
The webpage http://www.daimi.au.dk/�hrn ontainsinformation about how to download a opy of this book (sub-jet to the onditions listed below).The book may be downloaded and printed free of hargefor personal study; it may be downloaded and printed freeof harge by instrutors for immediate photoopying to stu-dents provided that no fee is harged for the ourse; thesepermissions expliitly exlude the right to any other distri-bution of the book (be it eletronially or by making physialopies).All other distribution should be agreed with the authors.This is a revised edition ompleted in July 1999; the originaledition from 1992 was published by John Wiley & Sons; thisshould be aknowledged in all referenes to the book.

i

Contents
List of Tables viiPrefae ix1 Introdution 11.1 Semanti desription methods . 11.2 The example language While . 71.3 Semantis of expressions . 91.4 Properties of the semantis . 152 Operational Semantis 192.1 Natural semantis . 202.2 Strutural operational semantis . 322.3 An equivalene result . 402.4 Extensions of While . 442.5 Bloks and proedures . 503 Provably Corret Implementation 633.1 The abstrat mahine . 633.2 Spei�ation of the translation . 693.3 Corretness . 733.4 An alternative proof tehnique . 814 Denotational Semantis 854.1 Diret style semantis: spei�ation 854.2 Fixed point theory . 934.3 Diret style semantis: existene . 1074.4 An equivalene result . 1124.5 Extensions of While . 1175 Stati Program Analysis 1335.1 Properties and property states . 1355.2 The analysis . 142v

vi Contents5.3 Safety of the analysis . 1535.4 Bounded iteration . 1606 Axiomati Program Veri�ation 1696.1 Diret proofs of program orretness 1696.2 Partial orretness assertions . 1756.3 Soundness and ompleteness . 1836.4 Extensions of the axiomati system 1916.5 Assertions for exeution time . 2007 Further Reading 209A Review of Notation 213Appendies 212B Introdution to Miranda Implementations 217B.1 Abstrat syntax . 217B.2 Evaluation of expressions . 218C Operational Semantis in Miranda 221C.1 Natural semantis . 221C.2 Strutural operational semantis . 223C.3 Extensions of While . 225C.4 Provably orret implementation 227D Denotational Semantis in Miranda 229D.1 Diret style semantis . 229D.2 Extensions of While . 230D.3 Stati program analysis . 230Bibliography 233Index of Symbols 235Index 237

List of Tables1.1 The semantis of arithmeti expressions 131.2 The semantis of boolean expressions 142.1 Natural semantis for While . 202.2 Strutural operational semantis for While 332.3 Natural semantis for statements of Blok 522.4 Natural semantis for variable delarations 522.5 Natural semantis for Pro with dynami sope rules 542.6 Proedure alls in ase of mixed sope rules (hoose one) 562.7 Natural semantis for variable delarations using loations 582.8 Natural semantis for Pro with stati sope rules 593.1 Operational semantis for AM . 653.2 Translation of expressions . 703.3 Translation of statements in While 714.1 Denotational semantis for While 864.2 Denotational semantis for While using loations 1194.3 Denotational semantis for variable delarations 1214.4 Denotational semantis for non-reursive proedure delarations . . 1224.5 Denotational semantis for Pro 1234.6 Denotational semantis for reursive proedure delarations 1254.7 Continuation style semantis for While 1284.8 Continuation style semantis for Ex 1305.1 Analysis of expressions . 1435.2 Analysis of statements in While 1446.1 Axiomati system for partial orretness 1786.2 Axiomati system for total orretness 1926.3 Exat exeution times for expressions 2026.4 Natural semantis for While with exat exeution times 2036.5 Axiomati system for order of magnitude of exeution time 204
vii

viii List of Tables

PrefaeMany books on formal semantis begin by explaining that there are three majorapproahes to semantis, that is� operational semantis,� denotational semantis, and� axiomati semantis;but then they go on to study just one of these in greater detail. The purpose ofthis book is to� present the fundamental ideas behind all of these approahes,� to stress their relationship by formulating and proving the relevant theorems,and� to illustrate the appliability of formal semantis as a tool in omputersiene.This is an ambitious goal and to ahieve it, the bulk of the development on-entrates on a rather small ore language of while-programs for whih the threeapproahes are developed to roughly the same level of sophistiation. To demon-strate the appliability of formal semantis we show� how to use semantis for validating prototype implementations of program-ming languages,� how to use semantis for verifying analyses used in more advaned imple-mentations of programming languages, and� how to use semantis for verifying useful program properties inluding infor-mation about exeution time.The development is introdutory as is already reeted in the title. For this rea-son very many advaned onepts within operational, denotational and axiomatisemantis have had to be omitted. Also we have had to omit treatment of otherapproahes to semantis, for example Petri-nets and temporal logi. Some pointersto further reading are given in Chapter 7.ix

x Prefae

�������
�������
�������

HHHHHHH
HHHHHHH
HHHHHHH

Chapter 1Chapter 2Setions 2.1{2.3Setions 2.4{2.5 Chapter 3Chapter 4Setions 4.1{4.4Setion 4.5 Chapter 5Chapter 6Setions 6.1{6.3Setion 6.4 Setion 6.5Chapter 7
OverviewAs is illustrated in the dependeny diagram, Chapters 1, 2, 4, 6 and 7 form the oreof the book. Chapter 1 introdues the example language of while-programs thatis used throughout the book. In Chapter 2 we over two approahes to operationalsemantis, the natural semantis of G. Kahn and the strutural operational se-mantis of G. Plotkin. Chapter 4 develops the denotational semantis of D. Sottand C. Strahey inluding simple �xed point theory. Chapter 6 introdues pro-gram veri�ation based on operational and denotational semantis and goes on topresent the axiomati approah due to C. A. R. Hoare. Finally, Chapter 7 ontainssuggestions for further reading.The �rst three or four setions of eah of the Chapters 2, 4 and 6 are devotedto the language of while-programs and overs spei�ation as well as theoretial

Prefae xiaspets. In eah of the hapters we extend the while-language with various otheronstruts and the emphasis is here on spei�ation rather than theory. In Setions2.4 and 2.5 we onsider extensions with abortion, non-determinism, parallelism,blok onstruts, dynami and stati proedures, and non-reursive and reursiveproedures. In Setion 4.5 we onsider extensions of the while-language withstati proedures that may or may not be reursive and we show how to handleexeptions, that is, ertain kinds of jumps. Finally, in Setion 6.4 we onsider anextension with non-reursive and reursive proedures and we also show how totalorretness properties are handled. The setions on extending the operational,denotational and axiomati semantis may be studied in any order.The appliability of operational, denotational and axiomati semantis is illus-trated in Chapters 3, 5 and 6. In Chapter 3 we show how to prove the orretnessof a simple ompiler for the while-language using the operational semantis. InChapter 5 we prove an analysis for the while-language orret using the denota-tional semantis. Finally, in Setion 6.5 we extend the axiomati approah so asto obtain information about exeution time of while-programs.Appendix A reviews the mathematial notation on whih this book is based. Itis mostly standard notation but some may �nd our use of ,! and � non-standard.We use D ,! E for the set of partial funtions from D to E ; this is beause we�nd that the D * E notation is too easily overlooked. Also we use R � S forthe omposition of binary relations R and S ; this is beause of the di�erent orderof omposition used for relations and funtions. When dealing with axiomatisemantis we use formulae f P g S f Q g for partial orretness assertions butf P g S f + Q g for total orretness assertions beause the expliit ourrene of+ (for termination) may prevent the student from onfusing the two systems.Appendies B, C and D ontain implementations of some of the semanti spei-�ations using the funtional languageMiranda.1 The intention is that the abilityto experiment with semanti de�nitions enhanes the understanding of materialthat is often regarded as being terse and heavy with formalism. It should be pos-sible to rework these implementations in any funtional language but if an eagerlanguage (like Standard ML) is used, great are must be taken in the imple-mentation of the �xed point ombinator. However, no ontinuity is lost if theseappendies are ignored.Notes for the instrutorThe reader should preferably be aquainted with the BNF-style of speifying thesyntax of programming languages and should be familiar with most of the mathe-matial onepts surveyed in Appendix A. To appreiate the prototype implemen-tations of the appendies some experiene in funtional programming is required.1Miranda is a trademark of Researh Software Limited, 23 St Augustines Road, Canterbury,Kent CT1 1XP, UK.

xii PrefaeWe have ourselves used this book for an undergraduate ourse at Aarhus Universityin whih the required funtional programming is introdued \on-the-y".We provide two kinds of exerises. One kind helps the student in his/herunderstanding of the de�nitions/results/tehniques used in the text. In partiularthere are exerises that ask the student to prove auxiliary results needed for themain results but then the proof tehniques will be minor variations of those alreadyexplained in the text. We have marked those exerises whose results are neededlater by \(Essential)". The other kind of exerises are more hallenging in thatthey extend the development, for example by relating it to other approahes. Weuse a star to mark the more diÆult of these exerises. Exerises marked by twostars are rather lengthy and may require insight not otherwise presented in thebook. It will not be neessary for students to attempt all the exerises but wedo reommend that they read them and try to understand what the exerises areabout.AknowledgementsIn writing this book we have been greatly assisted by the omments and sug-gestions provided by olleagues and reviewers and by students and instrutorsat Aarhus University. This inludes Anders Gammelgaard, Chris Hankin, Tor-ben Amtoft Hansen, Jens Palsberg J�rgensen, Ernst-R�udiger Olderog, David A.Shmidt, Kirsten L. Solberg and Bernhard Ste�en. Speial thanks are due to Stef-fen Grarup, Jaob Seligmann, and Bettina Blaaberg S�rensen for their enthusiasmand great are in reading preliminary versions.Aarhus, Otober 1991 Hanne Riis NielsonFlemming NielsonRevised EditionIn this revised edition we have orreted a number of typographial errors and afew mistakes; however, no major hanges have been made. Sine the publiationof the �rst edition we have obtained helpful omments from Jens Knoop andAnders Sandholm. The webpage for the book now also ontains implementationsof Appendies B, C and D in Gofer as well as in Miranda.Aarhus, July 1999 Hanne Riis NielsonFlemming Nielson

Chapter 1IntrodutionThe purpose of this book is� to desribe some of the main ideas and methods used in semantis,� to illustrate these on interesting appliations, and� to investigate the relationship between the various methods.Formal semantis is onerned with rigorously speifying the meaning, or be-haviour, of programs, piees of hardware et. The need for rigour arises beause� it an reveal ambiguities and subtle omplexities in apparently rystal learde�ning douments (for example programming language manuals), and� it an form the basis for implementation, analysis and veri�ation (in par-tiular proofs of orretness).We will use informal set theoreti notation (reviewed in Appendix A) to representsemanti onepts. This will suÆe in this book but for other purposes greaternotational preision (that is, formality) may be needed, for example when proess-ing semanti desriptions by mahine as in semantis direted ompiler-ompilersor mahine assisted proof hekers.1.1 Semanti desription methodsIt is ustomary to distinguish between the syntax and the semantis of a pro-gramming language. The syntax is onerned with the grammatial struture ofprograms. So a syntati analysis of the programz:=x; x:=y; y:=z 1

2 1 Introdutionwill realize that it onsists of three statements separated by the symbol `;'. Eahof these statements has the form of a variable followed by the omposite symbol`:=' and an expression whih is just a variable.The semantis is onerned with the meaning of grammatially orret pro-grams. So it will express that the meaning of the above program is to exhangethe values of the variables x and y (and setting z to the �nal value of y). If wewere to explain this in more detail we would look at the grammatial struture ofthe program and use explanations of the meanings of� sequenes of statements separated by `;', and� a statement onsisting of a variable followed by `:=' and an expression.The atual explanations an be formalized in di�erent ways. In this book we shallonsider three approahes. Very roughly, the ideas are as follows:Operational semantis: The meaning of a onstrut is spei�ed by the ompu-tation it indues when it is exeuted on a mahine. In partiular, it is ofinterest how the e�et of a omputation is produed.Denotational semantis: Meanings are modelled by mathematial objets thatrepresent the e�et of exeuting the onstruts. Thus only the e�et is ofinterest, not how it is obtained.Axiomati semantis: Spei� properties of the e�et of exeuting the on-struts are expressed as assertions. Thus there may be aspets of the exeu-tions that are ignored.To get a feeling for their di�erent nature let us see how they express the meaningof the example program above.Operational semantis (Chapter 2)An operational explanation of the meaning of a onstrut will tell how to exeuteit: � To exeute a sequene of statements separated by `;' we exeute the individ-ual statements one after the other and from left to right.� To exeute a statement onsisting of a variable followed by `:=' and anothervariable we determine the value of the seond variable and assign it to the�rst variable.We shall reord the exeution of the example program in a state where x has thevalue 5, y the value 7 and z the value 0 by the following \derivation sequene":

1.1 Semanti desription methods 3hz:=x; x:=y; y:=z, [x7!5, y7!7, z7!0℄i) hx:=y; y:=z, [x7!5, y7!7, z7!5℄i) hy:=z, [x7!7, y7!7, z7!5℄i) [x7!7, y7!5, z7!5℄In the �rst step we exeute the statement z:=x and the value of z is hangedto 5 whereas those of x and y are unhanged. The remaining program is nowx:=y; y:=z. After the seond step the value of x is 7 and we are left with theprogram y:=z. The third and �nal step of the omputation will hange the valueof y to 5. Therefore the initial values of x and y have been exhanged, using z asa temporary variable.This explanation gives an abstration of how the program is exeuted on amahine. It is important to observe that it is indeed an abstration: we ignoredetails like use of registers and addresses for variables. So the operational semantisis rather independent of mahine arhitetures and implementation strategies.In Chapter 2 we shall formalize this kind of operational semantis whih is oftenalled strutural operational semantis (or small-step semantis). An alternativeoperational semantis is alled natural semantis (or big-step semantis) and di�ersfrom the strutural operational semantis by hiding even more exeution details.In the natural semantis the exeution of the example program in the same stateas before will be represented by the following \derivation tree":hz:=x, s0i ! s1 hx:=y, s1i ! s2hz:=x; x:=y, s0i ! s2 hy:=z, s2i ! s3hz:=x; x:=y; y:=z, s0i ! s3where we have used the abbreviations:s0 = [x7!5, y7!7, z7!0℄s1 = [x7!5, y7!7, z7!5℄s2 = [x7!7, y7!7, z7!5℄s3 = [x7!7, y7!5, z7!5℄This is to be read as follows: The exeution of z:=x in the state s0 will result inthe state s1 and the exeution of x:=y in state s1 will result in state s2. Thereforethe exeution of z:=x; x:=y in state s0 will give state s2. Furthermore, exeutionof y:=z in state s2 will give state s3 so in total the exeution of the program instate s0 will give the resulting state s3. This is expressed byhz:=x; x:=y; y:=z, s0i ! s3

4 1 Introdutionbut now we have hidden the above explanation of how it was atually obtained.In Chapter 3 we shall use the natural semantis as the basis for proving theorretness of an implementation of a simple programming language.Denotational semantis (Chapter 4)In the denotational semantis we onentrate on the e�et of exeuting the pro-grams and we shall model this by mathematial funtions:� The e�et of a sequene of statements separated by `;' is the funtionalomposition of the e�ets of the individual statements.� The e�et of a statement onsisting of a variable followed by `:=' and anothervariable is the funtion that given a state will produe a new state: it is asthe original one exept that the value of the �rst variable of the statementis equal to that of the seond variable.For the example program we obtain funtions written S[[z:=x℄℄, S[[x:=y℄℄, andS[[y:=z℄℄ for eah of the assignment statements and for the overall program weget the funtionS[[z:=x; x:=y; y:=z℄℄ = S[[y:=z℄℄ Æ S[[x:=y℄℄ Æ S[[z:=x℄℄Note that the order of the statements have hanged beause we use the usualnotation for funtion omposition where (f Æ g) s means f (g s). If we want todetermine the e�et of exeuting the program on a partiular state then we anapply the funtion to that state and alulate the resulting state as follows:S[[z:=x; x:=y; y:=z℄℄([x7!5, y7!7, z7!0℄)= (S[[y:=z℄℄ Æ S[[x:=y℄℄ Æ S[[z:=x℄℄)([x7!5, y7!7, z7!0℄)= S[[y:=z℄℄(S[[x:=y℄℄(S[[z:=x℄℄([x7!5, y7!7, z7!0℄)))= S[[y:=z℄℄(S[[x:=y℄℄([x7!5, y7!7, z7!5℄))= S[[y:=z℄℄([x7!7, y7!7, z7!5℄)= [x7!7, y7!5, z7!5℄Note that we are only manipulating mathematial objets; we are not onernedwith exeuting programs. The di�erene may seem small for a program with onlyassignment and sequening statements but for programs with more sophistiatedonstruts it is substantial. The bene�ts of the denotational approah are mainlydue to the fat that it abstrats away from how programs are exeuted. Thereforeit beomes easier to reason about programs as it simply amounts to reasoningabout mathematial objets. However, a prerequisite for doing so is to establish a

1.1 Semanti desription methods 5�rm mathematial basis for denotational semantis and this task turns out not tobe entirely trivial.The denotational approah an easily be adapted to express other sorts ofproperties of programs. Some examples are:� Determine whether all variables are initialized before they are used | if nota warning may be appropriate.� Determine whether a ertain expression in the program always evaluates toa onstant | if so one an replae the expression by the onstant.� Determine whether all parts of the program are reahable | if not they ouldas well be removed or a warning might be appropriate.In Chapter 5 we develop an example of this.While we prefer the denotational approah when reasoning about programs wemay prefer an operational approah when implementing the language. It is there-fore of interest whether a denotational de�nition is equivalent to an operationalde�nition and this is studied in Setion 4.3.Axiomati semantis (Chapter 6)Often one is interested in partial orretness properties of programs: A program ispartially orret, with respet to a preondition and a postondition, if wheneverthe initial state ful�ls the preondition and the program terminates, then the �nalstate is guaranteed to ful�l the postondition. For our example program we havethe partial orretness property:f x=n ^ y=m g z:=x; x:=y; y:=z f y=n ^ x=m gwhere x=n ^ y=m is the preondition and y=n ^ x=m is the postondition. Thenames n and m are used to \remember" the initial values of x and y, respetively.The state [x7!5, y7!7, z7!0℄ satis�es the preondition by taking n=5 and m=7 andwhen we have proved the partial orretness property we an dedue that if theprogram terminates then it will do so in a state where y is 5 and x is 7. However,the partial orretness property does not ensure that the program will terminatealthough this is learly the ase for the example program.The axiomati semantis provides a logial system for proving partial orret-ness properties of individual programs. A proof of the above partial orretnessproperty may be expressed by the following \proof tree":

6 1 Introdution
f p0 g z:=x f p1 g f p1 g x:=y f p2 gf p0 g z:=x; x:=y f p2 g f p2 g y:=z f p3 gf p0 g z:=x; x:=y; y:=z f p3 gwhere we have used the abbreviationsp0 = x=n ^ y=mp1 = z=n ^ y=mp2 = z=n ^ x=mp3 = y=n ^ x=mWe may view the logial system as a spei�ation of only ertain aspets of thesemantis. It usually does not apture all aspets for the simple reason that all thepartial orretness properties listed below an be proved using the logial systembut ertainly we would not regard the programs as behaving in the same way:f x=n ^ y=m g z:=x; x:=y; y:=z f y=n ^ x=m gf x=n ^ y=m g if x=y then skip else (z:=x; x:=y; y:=z) f y=n ^ x=m gf x=n ^ y=m g while true do skip f y=n ^ x=m gThe bene�ts of the axiomati approah are that the logial systems provide an easyway of proving properties of programs | and to a large extent it has been possibleto automate it. Of ourse this is only worthwhile if the axiomati semantis isfaithful to the \more general" (denotational or operational) semantis we have inmind and we shall disuss this in Setion 6.3.The omplementary viewIt is important to note that these kinds of semantis are not rival approahes, butare di�erent tehniques appropriate for di�erent purposes and | to some extent |for di�erent programming languages. To stress this, the development will addressthe following issues:� It will develop eah of the approahes for a simple language of while-programs.� It will illustrate the power and weakness of eah of the approahes by ex-tending the while-language with other programming onstruts.� It will prove the relationship between the approahes for the while-language.

1.2 The example language While 7� It will give examples of appliations of the semanti desriptions in order toillustrate their merits.1.2 The example language WhileThis book illustrates the various forms of semantis on a very simple imperativeprogramming language alled While. As a �rst step we must speify its syntax.The syntati notation we use is based on BNF. First we list the various synta-ti ategories and give a meta-variable that will be used to range over onstruts ofeah ategory. For our language the meta-variables and ategories are as follows:n will range over numerals, Num,x will range over variables, Var,a will range over arithmeti expressions, Aexp,b will range over boolean expressions, Bexp, andS will range over statements, Stm.The meta-variables an be primed or subsripted. So, for example, n, n 0, n1, n2all stand for numerals.We assume that the struture of numerals and variables is given elsewhere; forexample numerals might be strings of digits, and variables strings of letters anddigits starting with a letter. The struture of the other onstruts is:a ::= n j x j a1 + a2 j a1 ? a2 j a1 � a2b ::= true j false j a1 = a2 j a1 � a2 j :b j b1 ^ b2S ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do SThus, a boolean expression b an only have one of six forms. It is alled a basiselement if it is true or false or has the form a1 = a2 or a1 � a2 where a1 and a2are arithmeti expressions. It is alled a omposite element if it has the form :bwhere b is a boolean expression, or the form b1 ^ b2 where b1 and b2 are booleanexpressions. Similar remarks apply to arithmeti expressions and statements.The spei�ation above de�nes the abstrat syntax of While in that it simplysays how to build arithmeti expressions, boolean expressions and statements inthe language. One way to think of the abstrat syntax is as speifying the parsetrees of the language and it will then be the purpose of the onrete syntax toprovide suÆient information that enable unique parse trees to be onstruted.So given the string of haraters:z:=x; x:=y; y:=z

8 1 Introdutionthe onrete syntax of the language must be able to resolve whih of the twoabstrat syntax trees below it is intended to represent: SS ; S���� ����S ; S���� SSSS
z := ax

���� AAAA x := ay
���� AAAA y := az

���� AAAA
S����S����z :=AAAAax
;���� S���� Sx := ay
���� AAAA ;SSSSS y := az

���� AAAA
In this book we shall not be onerned with onrete syntax. Whenever we talkabout syntati entities suh as arithmeti expressions, boolean expressions orstatements we will always be talking about the abstrat syntax so there is noambiguity with respet to the form of the entity. In partiular, the two treesabove are both elements of the syntati ategory Stm.It is rather umbersome to use the graphial representation of abstrat syntaxand we shall therefore use a linear notation. So we shall writez:=x; (x:=y; y:=z)for the leftmost syntax tree and(z:=x; x:=y); y:=zfor the rightmost one. For statements one often writes the brakets as begin � � �end but we shall feel free to use (� � �) in this book. Similarly, we use brakets(� � �) to resolve ambiguities for elements in the other syntati ategories. To utdown on the number of brakets needed we shall allow to use the familiar relativebinding powers (preedenes) of +, ? and � et. and so write 1+x?2 for 1+(x?2)but not for (1+x)?2.Exerise 1.1 The following statement is in While:y:=1; while :(x=1) do (y:=y?x; x:=x�1)It omputes the fatorial of the initial value bound to x (provided that it is positive)and the result will be the �nal value of y. Draw a graphial representation of theabstrat syntax tree. 2

1.3 Semantis of expressions 9Exerise 1.2 Assume that the initial value of the variable x is n and that theinitial value of y is m. Write a statement in While that assigns z the value of nto the power of m, that isn ? � � � ? n| {z }m timesGive a linear as well as a graphial representation of the abstrat syntax. 2The semantis of While is given by de�ning so-alled semanti funtions foreah of the syntati ategories. The idea is that a semanti funtion takes asyntati entity as argument and returns its meaning. The operational, denota-tional and axiomati approahes mentioned earlier will be used to speify semantifuntions for the statements of While. For numerals, arithmeti expressions andboolean expressions the semanti funtions are spei�ed one and for all below.1.3 Semantis of expressionsBefore embarking on speifying the semantis of the arithmeti and boolean ex-pressions of While let us have a brief look at the numerals; this will present themain ingredients of the approah in a very simple setting. So assume for the mo-ment that the numerals are in the binary system. Their abstrat syntax ouldthen be spei�ed by:n ::= 0 j 1 j n 0 j n 1In order to determine the number represented by a numeral we shall de�ne afuntionN : Num ! ZThis is alled a semanti funtion as it de�nes the semantis of the numerals. Wewant N to be a total funtion beause we want to determine a unique numberfor eah numeral of Num. If n 2 Num then we write N [[n℄℄ for the appliationof N to n, that is for the orresponding number. In general, the appliation ofa semanti funtion to a syntati entity will be written within the \syntati"brakets `[[' and `℄℄' rather than the more usual `(' and `)'. These brakets have nospeial meaning but throughout this book we shall enlose syntati arguments tosemanti funtions using the \syntati" brakets whereas we use ordinary brakets(or juxtapositioning) in all other ases.The semanti funtion N is de�ned by the following semanti lauses (or equa-tions):

10 1 IntrodutionN [[0℄℄ = 0N [[1℄℄ = 1N [[n 0℄℄ = 2 ? N [[n℄℄N [[n 1℄℄ = 2 ? N [[n℄℄ + 1Here 0 and 1 are numbers, that is elements of Z. Furthermore, ? and + are theusual arithmeti operations on numbers. The above de�nition is an example of aompositional de�nition; this means that for eah possible way of onstruting anumeral it tells how the orresponding number is obtained from the meanings ofthe subonstruts.Example 1.3 We an alulate the number N [[101℄℄ orresponding to the numeral101 as follows:N [[101℄℄ = 2 ? N [[10℄℄ + 1= 2 ? (2 ? N [[1℄℄) + 1= 2 ? (2 ? 1) + 1= 5Note that the string 101 is deomposed aording to the syntax for numerals. 2So far we have only laimed that the de�nition of N gives rise to a well-de�nedtotal funtion. We shall now present a formal proof showing that this is indeedthe ase.Fat 1.4 The above equations for N , de�ne a total funtion N : Num ! Z.Proof: We have a total funtion N , if for all arguments n 2 Numthere is exatly one number n 2 Z suh that N [[n℄℄ = n (*)Given a numeral n it an have one of four forms: it an be a basis element andthen it is equal to 0 or 1, or it an be a omposite element and then it is equal ton 00 or n 01 for some other numeral n 0. So, in order to prove (*) we have to onsiderall four possibilities.The proof will be onduted by indution on the struture of the numeral n.In the base ase we prove (*) for the basis elements of Num, that is for the aseswhere n is 0 or 1. In the indution step we onsider the omposite elements ofNum, that is the ases where n is n 00 or n 01. The indution hypothesis will thenallow us to assume that (*) holds for the immediate onstituent of n, that is n 0.We shall then prove that (*) holds for n. It then follows that (*) holds for all

1.3 Semantis of expressions 11numerals n beause any numeral n an be onstruted in that way.The ase n = 0: Only one of the semanti lauses de�ning N an be used and itgives N [[n℄℄ = 0. So learly there is exatly one number n in Z (namely 0) suhthat N [[n℄℄ = n.The ase n = 1 is similar and we omit the details.The ase n = n 00: Inspetion of the lauses de�ning N shows that only one ofthe lauses is appliable and we have N [[n℄℄ = 2 ? N [[n 0℄℄. We an now applythe indution hypothesis to n 0 and get that there is exatly one number n0 suhthat N [[n 0℄℄ = n0. But then it is lear that there is exatly one number n (namely2 ? n0) suh that N [[n℄℄ = n.The ase n = n 01 is similar and we omit the details. 2The general tehnique that we have applied in the de�nition of the syntax andsemantis of numerals an be summarized as follows:Compositional De�nitions1: The syntati ategory is spei�ed by an abstrat syntax giving the basiselements and the omposite elements. The omposite elements have aunique deomposition into their immediate onstituents.2: The semantis is de�ned by ompositional de�nitions of a funtion: Thereis a semanti lause for eah of the basis elements of the syntati ategoryand one for eah of the methods for onstruting omposite elements. Thelauses for omposite elements are de�ned in terms of the semantis of theimmediate onstituents of the elements.The proof tehnique we have applied is losely onneted with the approah tode�ning semanti funtions. It an be summarized as follows:Strutural Indution1: Prove that the property holds for all the basis elements of the syntatiategory.2: Prove that the property holds for all the omposite elements of the syn-tati ategory: Assume that the property holds for all the immediateonstituents of the element (this is alled the indution hypothesis) andprove that it also holds for the element itself.In the remainder of this book we shall assume that numerals are in deimalnotation and have their normal meanings (so for example N [[137℄℄ = 137 2 Z). It

12 1 Introdutionis important to understand, however, that there is a distintion between numerals(whih are syntati) and numbers (whih are semanti), even in deimal notation.Semanti funtionsThe meaning of an expression depends on the values bound to the variables thatour in it. For example, if x is bound to 3 then the arithmeti expression x+1evaluates to 4 but if x is bound to 2 then the expression evaluates to 3. We shalltherefore introdue the onept of a state: to eah variable the state will assoiateits urrent value. We shall represent a state as a funtion from variables to values,that is an element of the setState = Var ! ZEah state s spei�es a value, written s x , for eah variable x of Var. Thus ifs x = 3 then the value of x+1 in state s is 4.Atually, this is just one of several representations of the state. Some otherpossibilities are to use a table:x 5y 7z 0or a \list" of the form[x7!5, y7!7, z7!0℄(as in Setion 1.1). In all ases we must ensure that exatly one value is assoiatedwith eah variable. By requiring a state to be a funtion this is trivially ful�lledwhereas for the alternative representations above extra restritions have to beenfored.Given an arithmeti expression a and a state s we an determine the value ofthe expression. Therefore we shall de�ne the meaning of arithmeti expressionsas a total funtion A that takes two arguments: the syntati onstrut and thestate. The funtionality of A isA: Aexp ! (State ! Z)This means that A takes its parameters one at a time. So we may supply A withits �rst parameter, say x+1, and study the funtion A[[x+1℄℄. It has funtionalityState ! Z and only when we supply it with a state (whih happens to be afuntion but that does not matter) do we obtain the value of the expression x+1.Assuming the existene of the funtionN de�ning the meaning of numerals, wean de�ne the funtion A by de�ning its value A[[a℄℄s on eah arithmeti expression

1.3 Semantis of expressions 13A[[n℄℄s = N [[n℄℄A[[x ℄℄s = s xA[[a1 + a2℄℄s = A[[a1℄℄s + A[[a2℄℄sA[[a1 ? a2℄℄s = A[[a1℄℄s ? A[[a2℄℄sA[[a1 � a2℄℄s = A[[a1℄℄s � A[[a2℄℄sTable 1.1: The semantis of arithmeti expressionsa and state s. The de�nition of A is given in Table 1.1. The lause for n reetsthat the value of n in any state is N [[n℄℄. The value of a variable x in state s is thevalue bound to x in s, that is s x . The value of the omposite expression a1+a2in s is the sum of the values of a1 and a2 in s. Similarly, the value of a1 ? a2 in sis the produt of the values of a1 and a2 in s, and the value of a1 � a2 in s is thedi�erene between the values of a1 and a2 in s. Note that + , ? and � ourringon the right of these equations are the usual arithmeti operations, whilst on theleft they are just piees of syntax; this is analogous to the distintion betweennumerals and numbers but we shall not bother to use di�erent symbols.Example 1.5 Suppose that s x = 3. Then:A[[x+1℄℄s = A[[x℄℄s + A[[1℄℄s= (s x) + N [[1℄℄= 3 + 1= 4Note that here 1 is a numeral (enlosed in the brakets `[[' and `℄℄') whereas 1 is anumber. 2Example 1.6 Suppose we add the arithmeti expression � a to our language. Anaeptable semanti lause for this onstrut would beA[[� a℄℄s = 0 � A[[a℄℄swhereas the alternative lause A[[� a℄℄s = A[[0 � a℄℄s would ontradit the om-positionality requirement. 2Exerise 1.7 Prove that the equations of Table 1.1 de�ne a total funtion Ain Aexp ! (State ! Z): First argue that it is suÆient to prove that foreah a 2 Aexp and eah s 2 State there is exatly one value v 2 Z suh thatA[[a℄℄s = v. Next use strutural indution on the arithmeti expressions to provethat this is indeed the ase. 2

14 1 IntrodutionB[[true℄℄s = ttB[[false℄℄s = �B[[a1 = a2℄℄s = 8<: tt if A[[a1℄℄s = A[[a2℄℄s� if A[[a1℄℄s 6= A[[a2℄℄sB[[a1 � a2℄℄s = 8<: tt if A[[a1℄℄s � A[[a2℄℄s� if A[[a1℄℄s > A[[a2℄℄sB[[: b℄℄s = 8<: tt if B[[b℄℄s = �� if B[[b℄℄s = ttB[[b1 ^ b2℄℄s = 8<: tt if B[[b1℄℄s = tt and B[[b2℄℄s = tt� if B[[b1℄℄s = � or B[[b2℄℄s = �Table 1.2: The semantis of boolean expressionsThe values of boolean expressions are truth values so in a similar way we shallde�ne their meanings by a (total) funtion from State to T:B: Bexp ! (State ! T)Here T onsists of the truth values tt (for true) and � (for false).Using A we an de�ne B by the semanti lauses of Table 1.2. Again we havethe distintion between syntax (e.g. � on the left-hand side) and semantis (e.g.� on the right-hand side).Exerise 1.8 Assume that s x = 3 and determine B[[:(x = 1)℄℄s. 2Exerise 1.9 Prove that the equations of Table 1.2 de�ne a total funtion B inBexp ! (State ! T). 2Exerise 1.10 The syntati ategory Bexp0 is de�ned as the following extensionof Bexp:b ::= true j false j a1 = a2 j a1 6= a2 j a1 � a2 j a1 � a2j a1 < a2 j a1 > a2 j :b j b1 ^ b2 j b1 _ b2j b1) b2 j b1 , b2Give a ompositional extension of the semanti funtion B of Table 1.2.Two boolean expressions b1 and b2 are equivalent if for all states s,B[[b1℄℄s = B[[b2℄℄sShow that for eah b 0 of Bexp0 there exists a boolean expression b of Bexp suhthat b 0 and b are equivalent. 2

1.4 Properties of the semantis 151.4 Properties of the semantisLater in the book we shall be interested in two kinds of properties for expressions.One is that their values do not depend on values of variables that do not ourin them. The other is that if we replae a variable with an expression then weould as well have made a similar hange in the state. We shall formalize theseproperties below and prove that they do hold.Free variablesThe free variables of an arithmeti expression a is de�ned to be the set of variablesourring in it. Formally, we may give a ompositional de�nition of the subsetFV(a) of Var:FV(n) = ;FV(x) = f x gFV(a1 + a2) = FV(a1) [FV(a2)FV(a1 ? a2) = FV(a1) [FV(a2)FV(a1 � a2) = FV(a1) [FV(a2)As an example FV(x+1) = f x g and FV(x+y?x) = f x, y g. It should be obviousthat only the variables in FV(a) may inuene the value of a. This is formallyexpressed by:Lemma 1.11 Let s and s 0 be two states satisfying that s x = s 0 x for all x inFV(a). Then A[[a℄℄s = A[[a℄℄s 0.Proof:We shall give a fairly detailed proof of the lemma using strutural indutionon the arithmeti expressions. We shall �rst onsider the basis elements of Aexp:The ase n: From Table 1.1 we have A[[n℄℄s = N [[n℄℄ as well as A[[n℄℄s 0 = N [[n℄℄.So A[[n℄℄s = A[[n℄℄s 0 and learly the lemma holds in this ase.The ase x : From Table 1.1 we have A[[x ℄℄s = s x as well as A[[x ℄℄s 0 = s 0 x . Fromthe assumptions of the lemma we get s x = s 0 x beause x 2 FV(x) so learly thelemma holds in this ase.Next we turn to the omposite elements of Aexp:The ase a1 + a2: From Table 1.1 we have A[[a1 + a2℄℄s = A[[a1℄℄s + A[[s2℄℄s andsimilarly A[[a1 + a2℄℄s 0 = A[[a1℄℄s 0 + A[[s2℄℄s 0. Sine a i (for i = 1,2) is an immediatesubexpression of a1 + a2 and FV(a i) � FV(a1 + a2) we an apply the indutionhypothesis (that is the lemma) to a i and get A[[a i℄℄s = A[[a i℄℄s 0. It is now easy to

16 1 Introdutionsee that the lemma holds for a1 + a2 as well.The ases a1 � a2 and a1 ? a2 follow the same pattern and are omitted. Thisompletes the proof. 2In a similar way we may de�ne the set FV(b) of free variables in a booleanexpression b byFV(true) = ;FV(false) = ;FV(a1 = a2) = FV(a1) [FV(a2)FV(a1 � a2) = FV(a1) [FV(a2)FV(:b) = FV(b)FV(b1 ^ b2) = FV(b1) [FV(b2)Exerise 1.12 (Essential) Let s and s 0 be two states satisfying that s x = s 0 xfor all x in FV(b). Prove that B[[b℄℄s = B[[b℄℄s 0. 2SubstitutionsWe shall later be interested in replaing eah ourrene of a variable y in anarithmeti expression a with another arithmeti expression a0. This is alledsubstitution and we write a[y 7!a0℄ for the arithmeti expression so obtained. Theformal de�nition is as follows:n[y 7!a0℄ = nx [y 7!a0℄ = 8<: a0 if x = yx if x 6= y(a1 + a2)[y 7!a0℄ = (a1[y 7!a0℄) + (a2[y 7!a0℄)(a1 ? a2)[y 7!a0℄ = (a1[y 7!a0℄) ? (a2[y 7!a0℄)(a1 � a2)[y 7!a0℄ = (a1[y 7!a0℄) � (a2[y 7!a0℄)As an example (x+1)[x7!3℄ = 3+1 and (x+y?x)[x7!y�5℄ = (y�5)+y?(y�5).We also have a notion of substitution (or updating) for states. We de�nes[y 7!v ℄ to be the state that is as s exept that the value bound to y is v , that is(s[y 7!v ℄) x = 8<: v if x = ys x if x 6= yThe relationship between the two onepts is shown in the following exerise:

1.4 Properties of the semantis 17Exerise 1.13 (Essential) Prove that A[[a[y 7!a0℄℄℄s = A[[a℄℄(s[y 7!A[[a0℄℄s℄) forall states s. 2Exerise 1.14 (Essential) De�ne substitution for boolean expressions: b[y 7!a0℄is to be the boolean expression that is as b exept that all ourrenes of thevariable y are replaed by the arithmeti expression a0. Prove that your de�nitionsatis�esB[[b[y 7!a0℄℄℄s = B[[b℄℄(s[y 7!A[[a0℄℄s℄)for all states s. 2

18 1 Introdution

Chapter 2Operational SemantisThe role of a statement inWhile is to hange the state. For example, if x is boundto 3 in s and we exeute the statement x := x + 1 then we get a new state where xis bound to 4. So while the semantis of arithmeti and boolean expressions onlyinspet the state in order to determine the value of the expression, the semantisof statements will modify the state as well.In an operational semantis we are onerned with how to exeute programsand not merely what the results of exeution are. More preisely, we are interestedin how the states are modi�ed during the exeution of the statement. We shallonsider two di�erent approahes to operational semantis:� Natural semantis: its purpose is to desribe how the overall results of exe-utions are obtained.� Strutural operational semantis: its purpose is to desribe how the individualsteps of the omputations take plae.We shall see that for the language While we an easily speify both kinds ofsemantis and that they will be \equivalent" in a sense to be made lear later.However, we shall also give examples of programming onstruts where one of theapproahes is superior to the other.For both kinds of operational semantis, the meaning of statements will bespei�ed by a transition system. It will have two types of on�gurations:hS , si representing that the statement S is to be exeuted fromthe state s, ands representing a terminal (that is �nal) state.The terminal on�gurations will be those of the latter form. The transition relationwill then desribe how the exeution takes plae. The di�erene between the twoapproahes to operational semantis amounts to di�erent ways of speifying thetransition relation. 19

20 2 Operational Semantis[assns℄ hx := a, si ! s[x 7!A[[a℄℄s℄[skipns℄ hskip, si ! s[ompns℄ hS 1, si ! s 0, hS 2, s 0i ! s 00hS 1;S 2, si ! s 00[if ttns℄ hS 1, si ! s 0hif b then S 1 else S 2, si ! s 0 if B[[b℄℄s = tt[if�ns℄ hS 2, si ! s 0hif b then S 1 else S 2, si ! s 0 if B[[b℄℄s = �[while ttns℄ hS , si ! s 0, hwhile b do S , s 0i ! s 00hwhile b do S , si ! s 00 if B[[b℄℄s = tt[while�ns℄ hwhile b do S , si ! s if B[[b℄℄s = �Table 2.1: Natural semantis for While2.1 Natural semantisIn a natural semantis we are onerned with the relationship between the initialand the �nal state of an exeution. Therefore the transition relation will speifythe relationship between the initial state and the �nal state for eah statement.We shall write a transition ashS , si ! s 0Intuitively this means that the exeution of S from s will terminate and the re-sulting state will be s 0.The de�nition of ! is given by the rules of Table 2.1. A rule has the generalform hS 1, s1i ! s 01, � � �, hS n, sni ! s 0nhS , si ! s 0 if � � �where S 1, � � �, S n are immediate onstituents of S or are statements onstrutedfrom the immediate onstituents of S . A rule has a number of premises (writtenabove the solid line) and one onlusion (written below the solid line). A rule mayalso have a number of onditions (written to the right of the solid line) that haveto be ful�lled whenever the rule is applied. Rules with an empty set of premisesare alled axioms and the solid line is then omitted.Intuitively, the axiom [assns℄ says that in a state s, x := a is exeuted to yielda �nal state s[x 7!A[[a℄℄s℄ whih is as s exept that x has the value A[[a℄℄s. This

2.1 Natural semantis 21is really an axiom shema beause x , a and s are meta-variables standing forarbitrary variables, arithmeti expressions and states but we shall simply use theterm axiom for this. We obtain an instane of the axiom by seleting partiularvariables, arithmeti expressions and states. As an example, if s0 is the state thatassigns the value 0 to all variables thenhx := x+1, s0i ! s0[x7!1℄is an instane of [assns℄ beause x is instantiated to x, a to x+1, s to s0, and thevalue A[[x+1℄℄s0 is determined to be 1.Similarly [skipns℄ is an axiom and, intuitively, it says that skip does not hangethe state. Letting s0 be as above we obtainhskip, s0i ! s0as an instane of the axiom [skipns℄.Intuitively, the rule [ompns℄ says that to exeute S 1;S 2 from state s we must�rst exeute S 1 from s. Assuming that this yields a �nal state s 0 we shall thenexeute S 2 from s 0. The premises of the rule are onerned with the two statementsS 1 and S 2 whereas the onlusion expresses a property of the omposite statementitself. The following is an instane of the rule:hskip, s0i ! s0, hx := x+1, s0i ! s0[x7!1℄hskip; x := x+1, s0i ! s0[x7!1℄Here S 1 is instantiated to skip, S 2 to x := x + 1, s and s 0 are both instantiatedto s0 and s 00 is instantiated to s0[x7!1℄. Similarlyhskip, s0i ! s0[x7!5℄, hx := x+1, s0[x7!5℄i ! s0hskip; x := x+1, s0i ! s0is an instane of [ompns℄ although it is less interesting beause its premises annever be derived from the axioms and rules of Table 2.1.For the if-onstrut we have two rules. The �rst one, [if ttns℄, says that to exeuteif b then S 1 else S 2 we simply exeute S 1 provided that b evaluates to tt inthe state. The other rule, [if�ns℄, says that if b evaluates to � then to exeuteif b then S 1 else S 2 we just exeute S 2. Taking s0 x = 0 the following is aninstane of the rule [if ttns℄:hskip, s0i ! s0hif x = 0 then skip else x := x+1, s0i ! s0beause B[[x = 0℄℄s0 = tt. However, had it been the ase that s0 x 6= 0 then itwould not be an instane of the rule [if ttns℄ beause then B[[x = 0℄℄s0 would amountto �. Furthermore it would not be an instane of the rule [if�ns℄ beause the premisehas the wrong form.

22 2 Operational SemantisFinally, we have one rule and one axiom expressing how to exeute the while-onstrut. Intuitively, the meaning of the onstrut while b do S in the state san be explained as follows:� If the test b evaluates to true in the state s then we �rst exeute the body ofthe loop and then ontinue with the loop itself from the state so obtained.� If the test b evaluates to false in the state s then the exeution of the loopterminates.The rule [while ttns℄ formalizes the �rst ase where b evaluates to tt and it saysthat then we have to exeute S followed by while b do S again. The axiom[while�ns℄ formalizes the seond possibility and states that if b evaluates to � thenwe terminate the exeution of the while-onstrut leaving the state unhanged.Note that the rule [while ttns℄ spei�es the meaning of the while-onstrut in termsof the meaning of the very same onstrut so that we do not have a ompositionalde�nition of the semantis of statements.When we use the axioms and rules to derive a transition hS , si ! s 0 we obtaina derivation tree. The root of the derivation tree is hS , si ! s 0 and the leavesare instanes of axioms. The internal nodes are onlusions of instantiated rulesand they have the orresponding premises as their immediate sons. We requestthat all the instantiated onditions of axioms and rules must be satis�ed. Whendisplaying a derivation tree it is ommon to have the root at the bottom ratherthan at the top; hene the son is above its father. A derivation tree is alled simpleif it is an instane of an axiom, otherwise it is alled omposite.Example 2.1 Let us �rst onsider the statement of Chapter 1:(z:=x; x:=y); y:=zLet s0 be the state that maps all variables exept x and y to 0 and has s0 x = 5and s0 y = 7. Then the following is an example of a derivation tree:hz:=x, s0i ! s1 hx:=y, s1i ! s2hz:=x; x:=y, s0i ! s2 hy:=z, s2i ! s3h(z:=x; x:=y); y:=z, s0i ! s3where we have used the abbreviations:s1 = s0[z7!5℄s2 = s1[x7!7℄s3 = s2[y7!5℄

2.1 Natural semantis 23The derivation tree has three leaves denoted hz:=x, s0i ! s1, hx:=y, s1i ! s2,and hy:=z, s2i ! s3, orresponding to three appliations of the axiom [assns℄. Therule [ompns℄ has been applied twie. One instane ishz:=x, s0i ! s1, hx:=y, s1i ! s2hz:=x; x:=y, s0i ! s2whih has been used to ombine the leaves hz:=x, s0i ! s1 and hx:=y, s1i ! s2with the internal node labelled hz:=x; x:=y, s0i ! s2. The other instane ishz:=x; x:=y, s0i ! s2, hy:=z, s2i ! s3h(z:=x; x:=y); y:=z, s0i ! s3whih has been used to ombine the internal node hz:=x; x:=y, s0i ! s2 and theleaf hy:=z, s2i ! s3 with the root h(z:=x; x:=y); y:=z, s0i ! s3. 2Consider now the problem of onstruting a derivation tree for a given state-ment S and state s. The best way to approah this is to try to onstrut thetree from the root upwards. So we will start by �nding an axiom or rule with aonlusion where the left-hand side mathes the on�guration hS , si. There aretwo ases:� If it is an axiom and if the onditions of the axiom are satis�ed then wean determine the �nal state and the onstrution of the derivation tree isompleted.� If it is a rule then the next step is to try to onstrut derivation trees for thepremises of the rule. When this has been done, it must be heked that theonditions of the rule are ful�lled, and only then an we determine the �nalstate orresponding to hS , si.Often there will be more than one axiom or rule that mathes a given on�gurationand then the various possibilities have to be inspeted in order to �nd a derivationtree. We shall see later that for While there will be at most one derivation treefor eah transition hS , si ! s 0 but that this need not hold in extensions ofWhile.Example 2.2 Consider the fatorial statement:y:=1; while :(x=1) do (y:=y ? x; x:=x�1)and let s be a state with s x = 3. In this example we shall show thathy:=1; while :(x=1) do (y:=y ? x; x:=x�1), si ! s[y7!6℄[x7!1℄ (*)To do so we shall show that (*) an be obtained from the transition system ofTable 2.1. This is done by onstruting a derivation tree with the transition (*)as its root.Rather than presenting the omplete derivation tree T in one go, we shall buildit in an upwards manner. Initially, we only know that the root of T is of the form:

24 2 Operational Semantishy:=1; while :(x=1) do (y:=y ? x; x:=x�1), si ! s61However, the statementy:=1; while :(x=1) do (y:=y ? x; x:=x�1)is of the form S 1; S 2 so the only rule that ould have been used to produe theroot of T is [ompns℄. Therefore T must have the form:hy:=1, si!s13 T 1hy:=1; while :(x=1) do (y:=y?x; x:=x�1), si!s61for some state s13 and some derivation tree T 1 whih has roothwhile :(x=1) do (y:=y?x; x:=x�1), s13i!s61 (**)Sine hy:=1, si ! s13 has to be an instane of the axiom [assns℄ we get that s13 =s[y7!1℄.The missing part T 1 of T is a derivation tree with root (**). Sine the state-ment of (**) has the form while b do S the derivation tree T 1 must have beenonstruted by applying either the rule [while ttns℄ or the axiom [while�ns℄. SineB[[:(x=1)℄℄s13 = tt we see that only the rule [while ttns℄ ould have been applied soT 1 will have the form:T 2 T 3hwhile :(x=1) do (y:=y?x; x:=x�1), s13i!s61where T 2 is a derivation tree with roothy:=y?x; x:=x�1, s13i!s32and T 3 is a derivation tree with roothwhile :(x=1) do (y:=y?x; x:=x�1), s32i!s61 (***)for some state s32.Using that the form of the statement y:=y?x; x:=x�1 is S 1;S 2 it is now easyto see that the derivation tree T 2 ishy:=y?x, s13i!s33 hx:=x�1, s33i!s32hy:=y?x; x:=x�1, s13i!s32where s33 = s[y7!3℄ and s32 = s[y7!3℄[x7!2℄. The leaves of T 2 are instanes of[assns℄ and they are ombined using [ompns℄. So now T 2 is fully onstruted.In a similar way we an onstrut the derivation tree T 3 with root (***) andwe get:

2.1 Natural semantis 25hy:=y?x, s32i!s62 hx:=x�1, s62i!s61hy:=y?x; x:=x�1, s32i!s61 T 4hwhile :(x=1) do (y:=y?x; x:=x�1), s32i!s61where s62 = s[y7!6℄[x7!2℄, s61 = s[y7!6℄[x7!1℄ and T 4 is a derivation tree withroot hwhile :(x=1) do (y:=y?x; x:=x�1), s61i!s61Finally, we see that the derivation tree T 4 is an instane of the axiom [while�ns℄beause B[[:(x=1)℄℄s61 = �. This ompletes the onstrution of the derivation treeT for (*). 2Exerise 2.3 Consider the statementz:=0; while y�x do (z:=z+1; x:=x�y)Construt a derivation tree for this statement when exeuted in a state where xhas the value 17 and y has the value 5. 2We shall introdue the following terminology: The exeution of a statement Son a state s� terminates if and only if there is a state s 0 suh that hS , si ! s 0, and� loops if and only if there is no state s 0 suh that hS , si ! s 0.We shall say that a statement S always terminates if its exeution on a state sterminates for all hoies of s, and always loops if its exeution on a state s loopsfor all hoies of s.Exerise 2.4 Consider the following statements� while :(x=1) do (y:=y?x; x:=x�1)� while 1�x do (y:=y?x; x:=x�1)� while true do skipFor eah statement determine whether or not it always terminates and whether ornot it always loops. Try to argue for your answers using the axioms and rules ofTable 2.1. 2

26 2 Operational SemantisProperties of the semantisThe transition system gives us a way of arguing about statements and their prop-erties. As an example we may be interested in whether two statements S 1 and S 2are semantially equivalent; by this we mean that for all states s and s 0hS 1, si ! s 0 if and only if hS 2, si ! s 0Lemma 2.5 The statementwhile b do Sis semantially equivalent toif b then (S ; while b do S) else skip.Proof: The proof is in two stages. We shall �rst prove that ifhwhile b do S , si ! s 00 (*)then hif b then (S ; while b do S) else skip, si ! s 00 (**)Thus, if the exeution of the loop terminates then so does its one-level unfolding.Later we shall show that if the unfolded loop terminates then so will the loop itself;the onjuntion of these results then prove the lemma.Beause (*) holds we know that we have a derivation tree T for it. It anhave one of two forms depending on whether it has been onstruted using therule [while ttns℄ or the axiom [while�ns℄. In the �rst ase the derivation tree T has theform: T 1 T 2hwhile b do S , si ! s 00where T 1 is a derivation tree with root hS , si!s 0 and T 2 is a derivation tree withroot hwhile b do S , s 0i!s 00. Furthermore, B[[b℄℄s = tt. Using the derivation treesT 1 and T 2 as the premises for the rules [ompns℄ we an onstrut the derivationtree: T 1 T 2hS ; while b do S , si ! s 00Using that B[[b℄℄s = tt we an use the rule [if ttns℄ to onstrut the derivation tree

2.1 Natural semantis 27T 1 T 2hS ; while b do S , si ! s 00hif b then (S ; while b do S) else skip, si ! s 00thereby showing that (**) holds.Alternatively, the derivation tree T is an instane of [while�ns℄. Then B[[b℄℄s = �and we must have that s 00=s. So T simply ishwhile b do S , si ! sUsing the axiom [skipns℄ we get a derivation treehskip, si!s 00and we an now apply the rule [if�ns℄ to onstrut a derivation tree for (**):hskip, si ! s 00hif b then (S ; while b do S) else skip, si ! s 00This ompletes the �rst part of the proof.For the seond stage of the proof we assume that (**) holds and shall provethat (*) holds. So we have a derivation tree T for (**) and must onstrut one for(*). Only two rules ould give rise to the derivation tree T for (**), namely [if ttns℄or [if�ns℄. In the �rst ase, B[[b℄℄s = tt and we have a derivation tree T 1 with roothS ; while b do S , si!s 00The statement has the general form S 1; S 2 and the only rule that ould give thisis [ompns℄. Therefore there are derivation trees T 2 and T 3 forhS , si!s 0, andhwhile b do S , s 0i!s 00for some state s 0. It is now straightforward to use the rule [while ttns℄ to ombine T 2and T 3 to a derivation tree for (*).In the seond ase, B[[b℄℄s = � and T is onstruted using the rule [if�ns℄. Thismeans that we have a derivation tree forhskip, si!s 00and aording to axiom [skipns℄ it must be the ase that s=s 00. But then we anuse the axiom [while�ns℄ to onstrut a derivation tree for (*). This ompletes theproof. 2

28 2 Operational SemantisExerise 2.6 Prove that the two statements S 1;(S 2;S 3) and (S 1;S 2);S 3 are se-mantially equivalent. Construt a statement showing that S 1;S 2 is not, in general,semantially equivalent to S 2;S 1. 2Exerise 2.7 Extend the language While with the statementrepeat S until band de�ne the relation ! for it. (The semantis of the repeat-onstrut is notallowed to rely on the existene of a while-onstrut in the language.) Provethat repeat S until b and S ; if b then skip else (repeat S until b) aresemantially equivalent. 2Exerise 2.8 Another iterative onstrut isfor x := a1 to a2 do SExtend the language While with this statement and de�ne the relation ! for it.Evaluate the statementy:=1; for z:=1 to x do (y:=y ? x; x:=x�1)from a state where x has the value 5. Hint: You may need to assume that youhave an \inverse" to N , so that there is a numeral for eah number that may ariseduring the omputation. (The semantis of the for-onstrut is not allowed torely on the existene of a while-onstrut in the language.) 2In the above proof we used Table 2.1 to inspet the struture of the derivationtree for a ertain transition known to hold. In the proof of the next result we shallombine this with an indution on the shape of the derivation tree. The idea anbe summarized as follows:Indution on the Shape of Derivation Trees1: Prove that the property holds for all the simple derivation trees by showingthat it holds for the axioms of the transition system.2: Prove that the property holds for all omposite derivation trees: For eahrule assume that the property holds for its premises (this is alled theindution hypothesis) and prove that it also holds for the onlusion of therule provided that the onditions of the rule are satis�ed.To formulate the theorem we shall say that the semantis of Table 2.1 is determin-isti if for all hoies of S , s, s 0 and s 00 we have thathS , si ! s 0 and hS , si ! s 00 imply s 0 = s 00

2.1 Natural semantis 29This means that for every statement S and initial state s we an uniquely determinea �nal state s 0 if (and only if) the exeution of S terminates.Theorem 2.9 The natural semantis of Table 2.1 is deterministi.Proof: We assume that hS , si!s 0 and shall prove thatif hS , si!s 00 then s 0 = s 00.We shall proeed by indution on the shape of the derivation tree for hS , si!s 0.The ase [assns℄: Then S is x :=a and s 0 is s[x 7!A[[a℄℄s℄. The only axiom or rulethat ould be used to give hx :=a, si!s 00 is [assns℄ so it follows that s 00 must bes[x 7!A[[a℄℄s℄ and thereby s 0 = s 00.The ase [skipns℄: Analogous.The ase [ompns℄: Assume thathS 1;S 2, si!s 0holds beausehS 1, si!s0 and hS 2, s0i!s 0for some s0. The only rule that ould be applied to give hS 1;S 2, si!s 00 is [ompns℄so there is a state s1 suh thathS 1, si!s1 and hS 2, s1i!s 00The indution hypothesis an be applied to the premise hS 1, si!s0 and fromhS 1, si!s1 we get s0 = s1. Similarly, the indution hypothesis an be applied tothe premise hS 2, s0i!s 0 and from hS 2, s0i!s 00 we get s 0 = s 00 as required.The ase [if ttns℄: Assume thathif b then S 1 else S 2, si ! s 0holds beauseB[[b℄℄s = tt and hS 1, si!s 0From B[[b℄℄s = tt we get that the only rule that ould be applied to give thealternative hif b then S 1 else S 2, si ! s 00 is [if ttns℄. So it must be the ase thathS 1, si ! s 00

30 2 Operational SemantisBut then the indution hypothesis an be applied to the premise hS 1, si ! s 0 andfrom hS 1, si ! s 00 we get s 0 = s 00.The ase [if�ns℄: Analogous.The ase [while ttns℄: Assume thathwhile b do S , si ! s 0beauseB[[b℄℄s = tt, hS , si!s0 and hwhile b do S , s0i!s 0The only rule that ould be applied to give hwhile b do S , si ! s 00 is [while ttns℄beause B[[b℄℄s = tt and this means thathS , si!s1 and hwhile b do S , s1i ! s 00must hold for some s1. Again the indution hypothesis an be applied to thepremise hS , si!s0 and from hS , si!s1 we get s0 = s1. Thus we havehwhile b do S , s0i!s 0 and hwhile b do S , s0i!s 00Sine hwhile b do S , s0i!s 0 is a premise of (the instane of) [while ttns℄ we anapply the indution hypothesis to it. From hwhile b do S , s0i!s 00 we thereforeget s 0 = s 00 as required.The ase [while�ns℄: Straightforward. 2Exerise 2.10 * Prove that repeat S until b (as de�ned in Exerise 2.7) issemantially equivalent to S ; while :b do S . Argue that this means that theextended semantis is deterministi. 2It is worth observing that we ould not prove Theorem 2.9 using struturalindution on the statement S . The reason is that the rule [while ttns℄ de�nes thesemantis of while b do S in terms of itself. Strutural indution works �ne whenthe semantis is de�ned ompositionally (as e.g. A and B in Chapter 1). But thenatural semantis of Table 2.1 is not de�ned ompositionally beause of the rule[while ttns℄.Basially, indution on the shape of derivation trees is a kind of struturalindution on the derivation trees: In the base ase we show that the propertyholds for the simple derivation trees. In the indution step we assume that theproperty holds for the immediate onstituents of a derivation tree and show thatit also holds for the omposite derivation tree.

2.1 Natural semantis 31The semanti funtion SnsThe meaning of statements an now be summarized as a (partial) funtion fromState to State. We de�neSns: Stm ! (State ,! State)and this means that for every statement S we have a partial funtionSns[[S ℄℄ 2 State ,! State.It is given bySns[[S ℄℄s = (s 0 if hS , si ! s 0undef otherwiseNote that Sns is a well-de�ned partial funtion beause of Theorem 2.9. The needfor partiality is demonstrated by the statement while true do skip that alwaysloops (see Exerise 2.4); we then haveSns[[while true do skip℄℄ s = undeffor all states s.Exerise 2.11 The semantis of arithmeti expressions is given by the funtionA. We an also use an operational approah and de�ne a natural semantis forthe arithmeti expressions. It will have two kinds of on�gurations:ha, si denoting that a has to be evaluated in state s, andz denoting the �nal value (an element of Z).The transition relation !Aexp has the formha, si !Aexp zwhere the idea is that a evaluates to z in state s. Some example axioms and rulesare hn, si !Aexp N [[n℄℄hx , si !Aexp s xha1, si !Aexp z 1, ha2, si !Aexp z 2ha1 + a2, si !Aexp z where z = z 1 + z 2Complete the spei�ation of the transition system. Use strutural indution onAexp to prove that the meaning of a de�ned by this relation is the same as thatde�ned by A. 2

32 2 Operational SemantisExerise 2.12 In a similar way we an speify a natural semantis for the booleanexpressions. The transitions will have the formhb, si !Bexp twhere t 2 T. Speify the transition system and prove that the meaning of b de�nedin this way is the same as that de�ned by B. 2Exerise 2.13 Determine whether or not semanti equivalene of S 1 and S 2amounts to Sns[[S 1℄℄ = Sns[[S 2℄℄. 22.2 Strutural operational semantisIn strutural operational semantis the emphasis is on the individual steps of theexeution, that is the exeution of assignments and tests. The transition relationhas the formhS , si) where either is of the form hS 0, s 0i or of the form s 0. The transition expressesthe �rst step of the exeution of S from state s. There are two possible outomes:� If is of the form hS 0, s 0i then the exeution of S from s is not ompleted andthe remaining omputation is expressed by the intermediate on�gurationhS 0, s 0i.� If is of the form s 0 then the exeution of S from s has terminated and the�nal state is s 0.We shall say that hS , si is stuk if there is no suh that hS , si) .The de�nition of) is given by the axioms and rules of Table 2.2 and thegeneral form of these are as in the previous setion. Axioms [asssos℄ and [skipsos℄have not hanged at all beause the assignment and skip statements are fullyexeuted in one step.The rules [omp 1sos℄ and [omp 2sos℄ express that to exeute S 1;S 2 in state s we�rst exeute S 1 one step from s. Then there are two possible outomes:� If the exeution of S 1 has not been ompleted we have to omplete it beforeembarking on the exeution of S 2.� If the exeution of S 1 has been ompleted we an start on the exeution ofS 2.

2.2 Strutural operational semantis 33[asssos℄ hx := a, si) s[x 7!A[[a℄℄s℄[skipsos℄ hskip, si) s[omp 1sos℄ hS 1, si) hS 01, s 0ihS 1;S 2, si) hS 01;S 2, s 0i[omp 2sos℄ hS 1, si) s 0hS 1;S 2, si) hS 2, s 0i[if ttsos℄ hif b then S 1 else S 2, si) hS 1, si if B[[b℄℄s = tt[if�sos℄ hif b then S 1 else S 2, si) hS 2, si if B[[b℄℄s = �[whilesos℄ hwhile b do S , si)hif b then (S ; while b do S) else skip, siTable 2.2: Strutural operational semantis for WhileThe �rst ase is aptured by the rule [omp 1sos℄: If the result of exeuting the �rststep of hS , si is an intermediate on�guration hS 01, s 0i then the next on�gurationis hS 01;S 2, s 0i showing that we have to omplete the exeution of S 1 before we anstart on S 2. The seond ase above is aptured by the rule [omp 2sos℄: If the resultof exeuting S 1 from s is a �nal state s 0 then the next on�guration is hS 2, s 0i, sothat we an now start on S 2.From the axioms [if ttsos℄ and [if�sos℄ we see that the �rst step in exeuting aonditional is to perform the test and to selet the appropriate branh. Finally, theaxiom [whilesos℄ shows that the �rst step in the exeution of the while-onstrut isto unfold it one level, that is to rewrite it as a onditional. The test will thereforebe performed in the seond step of the exeution (where one of the axioms for theif-onstrut is applied). We shall see an example of this shortly.A derivation sequene of a statement S starting in state s is either� a �nite sequene0, 1, 2, � � �, kof on�gurations satisfying 0 = hS , si, i) i+1 for 0�i<k, k�0, and wherek is either a terminal on�guration or a stuk on�guration, or it is� an in�nite sequene0, 1, 2, � � �

34 2 Operational Semantisof on�gurations satisfying 0 = hS , si and i) i+1 for 0�iWe shall write 0)i i to indiate that there are i steps in the exeution from0 to i and we write 0)� i to indiate that there is a �nite number of steps.Note that 0)i i and 0)� i need not be derivation sequenes: they will beso if and only if i is either a terminal on�guration or a stuk on�guration.Example 2.14 Consider the statement(z := x; x := y); y := zof Chapter 1 and let s0 be the state that maps all variables exept x and y to 0and that has s0 x = 5 and s0 y = 7. We then have the derivation sequene:h(z := x; x := y); y := z, s0i) hx := y; y := z, s0[z7!5℄i) hy := z, (s0[z7!5℄)[x7!7℄i) ((s0[z7!5℄)[x7!7℄)[y7!5℄Corresponding to eah of these steps we have derivation trees explaining why theytake plae. For the �rst steph(z := x; x := y); y := z, s0i) hx := y; y := z, s0[z7!5℄ithe derivation tree is hz := x, s0i) s0[z7!5℄hz := x; x := y, s0i) hx := y, s0[z7!5℄ih(z := x; x := y); y := z, s0i) hx := y; y := z, s0[z7!5℄iand it has been onstruted from the axiom [asssos℄ and the rules [omp 1sos℄ and[omp 2sos℄. The derivation tree for the seond step is onstruted in a similar wayusing only [asssos℄ and [omp 2sos℄ and for the third step it simply is an instane of[asssos℄. 2Example 2.15 Assume that s x = 3. The �rst step of exeution from the on-�gurationhy:=1; while :(x=1) do (y:=y ? x; x:=x�1), siwill give the on�gurationhwhile :(x=1) do (y:=y ? x; x:=x�1), s[y7!1℄i

2.2 Strutural operational semantis 35This is ahieved using the axiom [asssos℄ and the rule [omp 2sos℄ as shown by thederivation tree: hy:=1, si) s[y7!1℄hy:=1; while :(x=1) do (y:=y?x; x:=x�1), si)hwhile :(x=1) do (y:=y?x; x:=x�1), s[y7!1℄iThe next step of the exeution will rewrite the loop as a onditional using theaxiom [whilesos℄ so we get the on�gurationhif :(x=1) then ((y:=y?x; x:=x�1);while :(x=1) do (y:=y?x; x:=x�1))else skip, s[y7!1℄iThe following step will perform the test and yields (aording to [if ttsos℄) the on-�gurationh(y:=y?x; x:=x�1); while :(x=1) do (y:=y ? x; x:=x�1), s[y7!1℄iWe an then use [asssos℄, [omp 2sos℄ and [omp 1sos℄ to obtain the on�gurationhx:=x�1; while :(x=1) do (y:=y ? x; x:=x�1), s[y7!3℄ias is veri�ed by the derivation tree:hy:=y?x, s[y7!1℄i)s[y7!3℄hy:=y?x; x:=x�1, s[y7!1℄i)hx:=x�1, s[y7!3℄ih(y:=y?x; x:=x�1); while :(x=1) do (y:=y?x; x:=x�1), s[y7!1℄i)hx:=x�1; while :(x=1) do (y:=y ? x; x:=x�1), s[y7!3℄iUsing [asssos℄ and [omp 2sos℄ the next on�guration will then behwhile :(x=1) do (y:=y ? x; x:=x�1), s[y7!3℄[x7!2℄iContinuing in this way we eventually reah the �nal state s[y7!6℄[x7!1℄. 2Exerise 2.16 Construt a derivation sequene for the statementz:=0; while y�x do (z:=z+1; x:=x�y)when exeuted in a state where x has the value 17 and y has the value 5. Determinea state s suh that the derivation sequene obtained for the above statement ands is in�nite. 2

36 2 Operational SemantisGiven a statement S in the language While and a state s it is always possibleto �nd at least one derivation sequene that starts in the on�guration hS , si:simply apply axioms and rules forever or until a terminal or stuk on�guration isreahed. Inspetion of Table 2.2 shows that there are no stuk on�gurations inWhile and Exerise 2.22 below will show that there is in fat only one derivationsequene that starts with hS , si. However, some of the onstruts onsidered inSetion 2.4 that extend While will have on�gurations that are stuk or morethan one derivation sequene that starts in a given on�guration.In analogy with the terminology of the previous setion we shall say that theexeution of a statement S on a state s� terminates if and only if there is a �nite derivation sequene starting withhS , si, and� loops if and only if there is an in�nite derivation sequene starting withhS , si.We shall say that the exeution of S on s terminates suessfully if hS , si)� s 0for some state s 0; in While an exeution terminates suessfully if and only if itterminates beause there are no stuk on�gurations. Finally, we shall say that astatement S always terminates if it terminates on all states, and always loops if itloops on all states.Exerise 2.17 Extend While with the onstrut repeat S until b and spe-ify the strutural operational semantis for it. (The semantis for the repeat-onstrut is not allowed to rely on the existene of a while-onstrut.) 2Exerise 2.18 Extend While with the onstrut for x := a1 to a2 do S andspeify the strutural operational semantis for it. Hint: You may need to assumethat you have an \inverse" to N , so that there is a numeral for eah number thatmay arise during the omputation. (The semantis for the for-onstrut is notallowed to rely on the existene of a while-onstrut.) 2Properties of the semantisFor strutural operational semantis it is often useful to ondut proofs by in-dution on the length of the derivation sequenes. The proof tehnique may besummarized as follows:

2.2 Strutural operational semantis 37Indution on the Length of Derivation Sequenes1: Prove that the property holds for all derivation sequenes of length 0.2: Prove that the property holds for all other derivation sequenes: Assumethat the property holds for all derivation sequenes of length at most k(this is alled the indution hypothesis) and show that it holds for deriva-tion sequenes of length k+1.The indution step of a proof following this priniple will often be done by inspet-ing either� the struture of the syntati element, or� the derivation tree validating the �rst transition of the derivation sequene.Note that the proof tehnique is a simple appliation of mathematial indution.To illustrate the use of the proof tehnique we shall prove the following lemma(to be used in the next setion). Intuitively, the lemma expresses that the exeutionof a omposite onstrut S 1;S 2 an be split into two parts, one orresponding toS 1 and the other orresponding to S 2.Lemma 2.19 If hS 1;S 2, si)k s 00 then there exists a state s 0 and natural numbersk1 and k2 suh that hS 1, si)k1 s 0 and hS 2, s 0i)k2 s 00 where k = k1+k2.Proof: The proof is by indution on the number k, that is by indution on thelength of the derivation sequene hS 1;S 2, si)k s 00.If k = 0 then the result holds vauously.For the indution step we assume that the lemma holds for k � k0 and we shallprove it for k0+1. So assume thathS 1;S 2, si)k0+1 s 00This means that the derivation sequene an be written ashS 1;S 2, si))k0 s 00for some on�guration . Now one of two ases applies depending on whih of thetwo rules [omp 1sos℄ and [omp 2sos℄ was used to obtain hS 1;S 2, si) .In the �rst ase where [omp 1sos℄ is used we havehS 1;S 2, si) hS 01;S 2, s 0ibeause

38 2 Operational SemantishS 1, si) hS 01, s 0iWe therefore havehS 01;S 2, s 0i)k0 s 00and the indution hypothesis an be applied to this derivation sequene beauseit is shorter than the one we started with. This means that there is a state s0 andnatural numbers k1 and k2 suh thathS 01, s 0i)k1 s0 and hS 2, s0i)k2 s 00where k1+k2=k0. Using that hS 1, si) hS 01, s 0i and hS 01, s 0i)k1 s0 we gethS 1, si)k1+1 s0We have already seen that hS 2, s0i)k2 s 00 and sine (k1+1)+k2 = k0+1 we haveproved the required result.The seond possibility is that [omp 2sos℄ has been used to obtain the derivationhS 1;S 2, si) . Then we havehS 1, si) s 0and is hS 2, s 0i so thathS 2, s 0i)k0 s 00The result now follows by hoosing k1=1 and k2=k0. 2Exerise 2.20 Suppose that hS 1;S 2, si)�hS 2, s 0i. Show that it is not neessarilythe ase that hS 1, si)�s 0. 2Exerise 2.21 (Essential) Prove thatif hS 1, si)k s 0 then hS 1;S 2, si)k hS 2, s 0ithat is the exeution of S 1 is not inuened by the statement following it. 2In the previous setion we de�ned a notion of determinism based on the naturalsemantis. For the strutural operational semantis we de�ne the similar notionas follows. The semantis of Table 2.2 is deterministi if for all hoies of S , s, and 0 we have thathS , si) and hS , si) 0 imply = 0

2.2 Strutural operational semantis 39Exerise 2.22 (Essential) Show that the strutural operational semantis ofTable 2.2 is deterministi. Dedue that there is exatly one derivation sequenestarting in a on�guration hS , si. Argue that a statement S ofWhile annot bothterminate and loop on a state s and hene it annot both be always terminatingand always looping. 2In the previous setion we de�ned a notion of two statements S 1 and S 2 beingsemantially equivalent. The similar notion an be de�ned based on the struturaloperational semantis: S 1 and S 2 are semantially equivalent if for all states s� hS 1, si)� if and only if hS 2, si)� , whenever is a on�guration thatis either stuk or terminal, and� there is an in�nite derivation sequene starting in hS 1, si if and only if thereis one starting in hS 2, si.Note that in the �rst ase the length of the two derivation sequenes may bedi�erent.Exerise 2.23 Show that the following statements of While are semantiallyequivalent in the above sense:� S ;skip and S� while b do S and if b then (S ; while b do S) else skip� S 1;(S 2;S 3) and (S 1;S 2);S 3You may use the result of Exerise 2.22. Disuss to what extent the notion ofsemanti equivalene introdued above is the same as that de�ned from the naturalsemantis. 2Exerise 2.24 Prove that repeat S until b (as de�ned in Exerise 2.17) is se-mantially equivalent to S ; while : b do S . 2The semanti funtion S sosAs in the previous setion the meaning of statements an be summarized by a(partial) funtion from State to State:Ssos: Stm ! (State ,! State)It is given bySsos[[S ℄℄s = 8<: s 0 if hS , si)� s 0undef otherwiseThe well-de�nedness of the de�nition follows from Exerise 2.22.Exerise 2.25 Determine whether or not semanti equivalene of S 1 and S 2amounts to Ssos[[S 1℄℄ = Ssos[[S 2℄℄. 2

40 2 Operational Semantis2.3 An equivalene resultWe have given two de�nitions of the semantis ofWhile and we shall now addressthe question of their equivalene.Theorem 2.26 For every statement S of While we have Sns[[S ℄℄ = Ssos[[S ℄℄.This result expresses two properties:� If the exeution of S from some state terminates in one of the semantis thenit also terminates in the other and the resulting states will be equal.� If the exeution of S from some state loops in one of the semantis then itwill also loop in the other.It should be fairly obvious that the �rst property follows from the theorem beausethere are no stuk on�gurations in the strutural operational semantis ofWhile.For the other property suppose that the exeution of S on state s loops in oneof the semantis. If it terminates in the other semantis we have a ontraditionwith the �rst property beause both semantis are deterministi (Theorem 2.9 andExerise 2.22). Hene S will have to loop on state s also in the other semantis.The theorem is proved in two stages as expressed by Lemma 2.27 and Lemma2.28 below. We shall �rst prove:Lemma 2.27 For every statement S of While and states s and s 0 we havehS , si ! s 0 implies hS , si)� s 0.So if the exeution of S from s terminates in the natural semantis then it willterminate in the same state in the strutural operational semantis.Proof: The proof proeeds by indution on the shape of the derivation tree forhS , si ! s 0.The ase [assns℄: We assume thathx := a, si ! s[x 7!A[[a℄℄s℄From [asssos℄ we get the requiredhx := a, si) s[x 7!A[[a℄℄s℄The ase [skipns℄: Analogous.The ase [ompns℄: Assume that

2.3 An equivalene result 41hS 1;S 2, si ! s 00beausehS 1, si ! s 0 and hS 2, s 0i ! s 00The indution hypothesis an be applied to both of the premises hS 1, si ! s 0 andhS 2, s 0i ! s 00 and giveshS 1, si)� s 0 and hS 2, s 0i)� s 00From Exerise 2.21 we gethS 1;S 2, si)� hS 2, s 0iand thereby hS 1;S 2, si)� s 00.The ase [if ttns℄: Assume thathif b then S 1 else S 2, si ! s 0beauseB[[b℄℄s = tt and hS 1, si ! s 0Sine B[[b℄℄s = tt we gethif b then S 1 else S 2, si) hS 1, si)� s 0where the �rst relationship omes from [if ttsos℄ and the seond from the indutionhypothesis applied to the premise hS 1, si ! s 0.The ase [if�ns℄: Analogous.The ase [while ttns℄: Assume thathwhile b do S , si ! s 00beauseB[[b℄℄s = tt, hS , si ! s 0 and hwhile b do S , s 0i ! s 00The indution hypothesis an be applied to both of the premises hS , si ! s 0 andhwhile b do S , s 0i ! s 00 and giveshS , si)� s 0 and hwhile b do S , s 0i)� s 00Using Exerise 2.21 we gethS ; while b do S , si)� s 00Using [whilesos℄ and [if ttsos℄ (with B[[b℄℄s = tt) we get the �rst two steps of

42 2 Operational Semantishwhile b do S , si) hif b then (S ; while b do S) else skip, si) hS ; while b do S , si)� s 00and we have already argued for the last part.The ase [while�ns℄: Straightforward. 2This ompletes the proof of Lemma 2.27. The seond part of the theoremfollows from:Lemma 2.28 For every statement S ofWhile, states s and s 0 and natural numberk we have thathS , si)k s 0 implies hS , si ! s 0.So if the exeution of S from s terminates in the strutural operational semantisthen it will terminate in the same state in the natural semantis.Proof: The proof proeeds by indution on the length of the derivation sequenehS , si)k s 0, that is by indution on k.If k=0 then the result holds vauously.To prove the indution step we assume that the lemma holds for k � k0 andwe shall then prove that it holds for k0+1. We proeed by ases on how the �rststep of hS , si)k0+1 s 0 is obtained, that is by inspeting the derivation tree forthe �rst step of omputation in the strutural operational semantis.The ase [asssos℄: Straightforward (and k0 = 0).The ase [skipsos℄: Straightforward (and k0 = 0).The ases [omp 1sos℄ and [omp 2sos℄: In both ases we assume thathS 1;S 2, si)k0+1 s 00We an now apply Lemma 2.19 and get that there exists a state s 0 and naturalnumbers k1 and k2 suh thathS 1, si)k1 s 0 and hS 2, s 0i)k2 s 00where k1+k2=k0+1. The indution hypothesis an now be applied to eah of thesederivation sequenes beause k1 � k0 and k2 � k0. So we gethS 1, si ! s 0 and hS 2, s 0i ! s 00

2.3 An equivalene result 43Using [ompns℄ we now get the required hS 1;S 2, si ! s 00.The ase [if ttsos℄: Assume that B[[b℄℄s = tt and thathif b then S 1 else S 2, si) hS 1, si)k0 s 0The indution hypothesis an be applied to the derivation sequene hS 1, si)k0 s 0and giveshS 1, si ! s 0The result now follows using [if ttns℄.The ase [if�sos℄: Analogous.The ase [whilesos℄: We havehwhile b do S , si) hif b then (S ; while b do S) else skip, si)k0 s 00The indution hypothesis an be applied to the k0 last steps of the derivationsequene and giveshif b then (S ; while b do S) else skip, si ! s 00and from Lemma 2.5 we get the requiredhwhile b do S , si ! s 00 2Proof of Theorem 2.26: For an arbitrary statement S and state s it followsfrom Lemmas 2.27 and 2.28 that if Sns[[S ℄℄s = s 0 then Ssos[[S ℄℄s = s 0 and vie versa.This suÆes for showing that the funtions Sns[[S ℄℄ and Ssos[[S ℄℄ must be equal: ifone is de�ned on a state s then so is the other, and therefore, if one is not de�nedon a state s then neither is the other. 2Exerise 2.29 Consider the extension of the languageWhile with the statementrepeat S until b. The natural semantis of the onstrut was onsidered inExerise 2.7 and the strutural operational semantis in Exerise 2.17. Modify theproof of Theorem 2.26 so that the theorem applies to the extended language. 2Exerise 2.30 Consider the extension of the languageWhile with the statementfor x := a1 to a2 do S . The natural semantis of the onstrut was onsidered inExerise 2.8 and the strutural operational semantis in Exerise 2.18. Modify theproof of Theorem 2.26 so that the theorem applies to the extended language. 2

44 2 Operational SemantisThe proof tehnique employed in the proof of Theorem 2.26 may be summa-rized as follows: Proof Summary for While:Equivalene of two Operational Semantis1: Prove by indution on the shape of derivation trees that for eah derivationtree in the natural semantis there is a orresponding �nite derivationsequene in the strutural operational semantis.2: Prove by indution on the length of derivation sequenes that for eah�nite derivation sequene in the strutural operational semantis there isa orresponding derivation tree in the natural semantis.When proving the equivalene of two operational semantis for a language withadditional programming onstruts one may need to amend the above proof teh-nique. One reason is that the equivalene result may have to be expressed dif-ferently from that of Theorem 2.26 (as will be the ase if the extended languageis non-deterministi). Also one might want to onsider only some of the �nitederivation sequenes, for example those ending in a terminal on�guration.2.4 Extensions of WhileIn order to illustrate the power and weakness of the two approahes to operationalsemantis we shall onsider various extensions of the language While. For eahextension we shall show how to modify the operational semantis.AbortionWe �rst extend While with the simple statement abort. The idea is that abortstops the exeution of the omplete program. This means that abort behavesdi�erently from while true do skip in that it auses the exeution to stop ratherthan loop. Also abort behaves di�erently from skip beause a statement followingabort will never be exeuted whereas one following skip ertainly will.Formally, the new syntax of statements is given by:S ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do S j abortWe shall not repeat the de�nitions of the sets of on�gurations but taitly assumethat they are modi�ed so as to orrespond to the extended syntax. The task thatremains, therefore, is to de�ne the new transition relations ! and).

2.4 Extensions of While 45The fat that abort stops the exeution of the program is modelled by ensuringthat the on�gurations of the form habort, si are stuk . Therefore the naturalsemantis of the extended language is still de�ned by the transition relation !of Table 2.1. So although the language and thereby the set of on�gurations havebeen extended we do not modify the de�nition of the transition relation. Similarly,the strutural operational semantis of the extended language is still de�ned byTable 2.2.From the strutural operational semantis point of view it is lear now thatabort and skip annot be semantially equivalent. This is beausehskip, si) sis the only derivation sequene for skip starting in s andhabort, siis the only derivation sequene for abort starting in s. Similarly, abort annot besemantially equivalent to while true do skip beausehwhile true do skip, si) hif true then (skip; while true do skip) else skip, si) hskip; while true do skip, si) hwhile true do skip, si) � � �is an in�nite derivation sequene for while true do skip whereas abort has none.Thus we shall laim that the strutural operational semantis aptures the informalexplanation given earlier.From the natural semantis point of view it is also lear that skip and abortannot be semantially equivalent. However, it turns out that while true do skipand abort are semantially equivalent! The reason is that in the natural semantiswe are only onerned with exeutions that terminate properly. So if we do nothave a derivation tree for hS , si ! s 0 then we annot tell whether it is beause weentered a stuk on�guration or a looping exeution. We an summarize this asfollows:Natural Semantis versus Strutural Operational Semantis� In a natural semantis we annot distinguish between looping and abnormaltermination.� In a strutural operational semantis looping is reeted by in�nite deriva-tion sequenes and abnormal termination by �nite derivation sequenes end-ing in a stuk on�guration.

46 2 Operational SemantisWe should note, however, that if abnormal termination is modelled by \normaltermination" in a speial error on�guration (inluded in the set of terminal on�g-urations) then we an distinguish between the three statements in both semantistyles.Exerise 2.31 Theorem 2.26 expresses that the natural semantis and the stru-tural operational semantis of While are equivalent. Disuss whether or not asimilar result holds for While extended with abort. 2Exerise 2.32 Extend While with the statementassert b before SThe idea is that if b evaluates to true then we exeute S and otherwise the exeutionof the omplete program aborts. Extend the strutural operational semantisof Table 2.2 to express this (without assuming that While ontains the abort-statement). Show that assert true before S is semantially equivalent to S butthat assert false before S neither is equivalent to while true do skip norskip. 2Non-determinismThe seond extension of While has statements given byS ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do S j S 1 or S 2The idea is here that in S 1 or S 2 we an non-deterministially hoose to exeuteeither S 1 or S 2. So we shall expet that exeution of the statementx := 1 or (x := 2; x := x + 2)ould result in a state where x has the value 1, but it ould as well result in a statewhere x has the value 4.When speifying the natural semantis we extend Table 2.1 with the two rules:[or 1ns℄ hS 1, si ! s 0hS 1 or S 2, si ! s 0[or 2ns℄ hS 2, si ! s 0hS 1 or S 2, si ! s 0Corresponding to the on�guration hx := 1 or (x := 2; x := x+2), si we havederivation trees forhx := 1 or (x := 2; x := x+2), si ! s[x7!1℄

2.4 Extensions of While 47as well ashx := 1 or (x := 2; x := x+2), si ! s[x7!4℄It is important to note that if we replae x := 1 by while true do skip in theabove statement then we will only have one derivation tree, namely that forh(while true do skip) or (x := 2; x := x+2), si ! s[x7!4℄Turning to the strutural operational semantis we shall extend Table 2.2 withthe two axioms:[or 1sos℄ hS 1 or S 2, si) hS 1, si[or 2sos℄ hS 1 or S 2, si) hS 2, siFor the statement x := 1 or (x := 2; x := x+2) we have two derivation sequenes:hx := 1 or (x := 2; x := x+2), si)� s[x7!1℄and hx := 1 or (x := 2; x := x+2), si)� s[x7!4℄If we replae x := 1 by while true do skip in the above statement then we stillhave two derivation sequenes. One is in�niteh(while true do skip) or (x := 2; x := x+2), si) hwhile true do skip, si)3 hwhile true do skip, si) � � �and the other is �niteh(while true do skip) or (x := 2; x := x+2), si)� s[x7!4℄Comparing the natural semantis and the strutural operational semantis wesee that the latter an hoose the \wrong" branh of the or-statement whereasthe �rst always hooses the \right" branh. This is summarized as follows:Natural Semantis versus Strutural Operational Semantis� In a natural semantis non-determinism will suppress looping, if possible.� In a strutural operational semantis non-determinism does not suppresslooping.

48 2 Operational SemantisExerise 2.33 Consider the statementx := �1; while x�0 do (x := x�1 or x := (�1)?x)Given a state s desribe the set of �nal states that may result aording to thenatural semantis. Further desribe the set of derivation sequenes that are spe-i�ed by the strutural operational semantis. Based on this disuss whether ornot you would regard the natural semantis as being equivalent to the struturaloperational semantis for this partiular statement. 2Exerise 2.34 We shall now extend While with the statementrandom(x)and the idea is that its exeution will hange the value of x to be any positivenatural number. Extend the natural semantis as well as the strutural operationalsemantis to express this. Disuss whether random(x) is a superuous onstrutin the ase where While is also extended with the or onstrut. 2ParallelismWe shall now onsider an extension of While with a parallel onstrut. So nowthe syntax of expressions is given byS ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do S j S 1 par S 2The idea is that both statements of S 1 par S 2 have to be exeuted but that theexeution an be interleaved. This means that a statement likex := 1 par (x := 2; x := x+2)an give three di�erent results for x, namely 4, 1 and 3: If we �rst exeute x := 1and then x := 2; x := x+2 we get the �nal value 4. Alternatively, if we �rstexeute x := 2; x := x+2 and then x := 1 we get the �nal value 1. Finally, wehave the possibility of �rst exeuting x := 2, then x := 1 and lastly x := x+2 andwe then get the �nal value 3.To express this in the strutural operational semantis we extend Table 2.2with the following rules:[par 1sos℄ hS 1, si) hS 01, s 0ihS 1 par S 2, si) hS 01 par S 2, s 0i[par 2sos℄ hS 1, si) s 0hS 1 par S 2, si) hS 2, s 0i

2.4 Extensions of While 49[par 3sos℄ hS 2, si) hS 02, s 0ihS 1 par S 2, si) hS 1 par S 02, s 0i[par 4sos℄ hS 2, si) s 0hS 1 par S 2, si) hS 1, s 0iThe �rst two rules take aount of the ase where we begin by exeuting the �rststep of statement S 1. If the exeution of S 1 is not fully ompleted we modify theon�guration so as to remember how far we have reahed. Otherwise only S 2 hasto be exeuted and we update the on�guration aordingly. The last two rulesare similar but for the ase where we begin by exeuting the �rst step of S 2.Using these rules we get the following derivation sequenes for the examplestatement:hx := 1 par (x := 2; x := x+2), si) hx := 2; x := x+2, s[x7!1℄i) hx := x+2, s[x7!2℄i) s[x7!4℄hx := 1 par (x := 2; x := x+2), si) hx := 1 par x := x+2, s[x7!2℄i) hx := 1, s[x7!4℄i) s[x7!1℄and hx := 1 par (x := 2; x := x+2), si) hx := 1 par x := x+2, s[x7!2℄i) hx := x+2, s[x7!1℄i) s[x7!3℄Turning to the natural semantis we might start by extending Table 2.1 withthe two rules:hS 1, si ! s 0, hS 2, s 0i ! s 00hS 1 par S 2, si ! s 00hS 2, si ! s 0, hS 1, s 0i ! s 00hS 1 par S 2, si ! s 00However, it is easy to see that this will not do beause the rules only expressthat either S 1 is exeuted before S 2 or vie versa. This means that we have lostthe ability to interleave the exeution of two statements. Furthermore, it seemsimpossible to be able to express this in the natural semantis beause we onsiderthe exeution of a statement as an atomi entity that annot be split into smaller

50 2 Operational Semantispiees. This may be summarized as follows:Natural Semantis versus Strutural Operational Semantis� In a natural semantis the exeution of the immediate onstituents is anatomi entity so we annot express interleaving of omputations.� In a strutural operational semantis we onentrate on the small steps ofthe omputation so we an easily express interleaving.Exerise 2.35 Consider an extension of While that in addition to the par-onstrut also ontains the onstrutprotet S endThe idea is that the statement S has to be exeuted as an atomi entity so thatfor examplex := 1 par protet (x := 2; x := x+2) endonly has two possible outomes namely 1 and 4. Extend the strutural operationalsemantis to express this. Can you speify a natural semantis for the extendedlanguage? 2Exerise 2.36 Speify a strutural operational semantis for arithmeti expres-sions where the individual parts of an expression may be omputed in parallel.Try to prove that you still obtain the result that was spei�ed by A. 22.5 Bloks and proeduresWe now extend the language While with bloks ontaining delarations of vari-ables and proedures. In doing so we introdue a ouple of important onepts:� variable and proedure environments, and� loations and stores.We shall onentrate on the natural semantis and will onsider dynami as wellas stati sope and non-reursive as well as reursive proedures.

2.5 Bloks and proedures 51Bloks and simple delarationsWe �rst extend the language While with bloks ontaining delarations of loalvariables. The new language is alled Blok and its syntax isS ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do S j begin DV S endwhere DV is a meta-variable ranging over the syntati ategory DeV of variabledelarations. The syntax of variable delarations is given by:DV ::= var x := a; DV j "where " is the empty delaration. The idea is that the variables delared inside ablok begin DV S end are loal to it. So in a statement likebegin var y := 1;(x := 1;begin var x := 2; y := x+1 end;x := y+x)endthe x in y := x+1 relates to the loal variable x introdued by var x := 2, whereasthe x in x := y+x relates to the global variable x that is also used in the statementx := 1. In both ases the y refers to the y delared in the outer blok. Therefore,the statement y := x+1 assigns y the value 3, rather than 2, and the statementx := y+x assigns x the value 4, rather than 5.Before going into the details of how to speify the semantis we shall de�ne theset DV(DV) of variables delared in DV :DV(var x := a; DV) = fxg [DV(DV)DV(") = ;We next de�ne the natural semantis. The idea will be to have one transi-tion system for eah of the syntati ategories Stm and DeV. For statementsthe transition system is as in Table 2.1 but extended with the rule of Table 2.3.The transition system for variable delarations has on�gurations of the two formshDV , si and s and the idea is that the transition relation !D spei�es the rela-tionship between initial and �nal states as before:hDV , si !D s 0The relation!D for variable delarations is given in Table 2.4. We generalize thesubstitution operation on states and write s 0[X 7�!s℄ for the state that is as s 0exept for variables in the set X where it is as spei�ed by s. Formally,

52 2 Operational Semantis[blokns℄ hDV , si !D s 0, hS , s 0i ! s 00hbegin DV S end, si ! s 00[DV(DV) 7�!s℄Table 2.3: Natural semantis for statements of Blok[varns℄ hDV , s[x 7!A[[a℄℄s℄i !D s 0hvar x := a; DV , si !D s 0[nonens℄ h", si !D sTable 2.4: Natural semantis for variable delarations(s 0[X 7�!s℄) x = (s x if x 2 Xs 0 x if x 62 XThis operation will ensure that loal variables are restored to their previous valueswhen the blok is left.Exerise 2.37 Use the natural semantis of Table 2.3 to show that exeution ofthe statementbegin var y := 1;(x := 1;begin var x := 2; y := x+1 end;x := y+x)endwill lead to a state where x has the value 4. 2It is somewhat harder to speify a strutural operational semantis for the ex-tended language. One approah is to replae states with a struture that is similarto the run-time staks used in the implementation of blok strutured languages.Another is to extend the statements with fragments of the state. However, weshall not go further into this.ProeduresWe shall now extend the language Blok with proedure delarations. The syntaxof the language Pro is:S ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do S j begin DV DP S end j all pDV ::= var x := a; DV j "DP ::= pro p is S ; DP j "

2.5 Bloks and proedures 53Here p is a meta-variable ranging over the syntati ategory Pname of proedurenames; in the onrete syntax there need not be any di�erene between proedurenames and variable names but in the abstrat syntax it is onvenient to be ableto distinguish between the two. Furthermore, DP is a meta-variable ranging overthe syntati ategory DeP of proedure delarations.We shall give three di�erent semantis of this language. They di�er in theirhoie of sope rules for variables and proedures:� dynami sope for variables as well as proedures,� dynami sope for variables but stati sope for proedures, and� stati sope for variables as well as proedures.To illustrate the di�erene onsider the statementbegin var x := 0;pro p is x := x ? 2;pro q is all p;begin var x := 5;pro p is x := x + 1;all q; y := xendendIf dynami sope is used for variables as well as proedures then the �nal valueof y is 6. The reason is that all q will all the loal proedure p whih willupdate the loal variable x. If we use dynami sope for variables but stati sopefor proedures then y gets the value 10. The reason is that now all q will allthe global proedure p and it will update the loal variable x. Finally, if we usestati sope for variables as well as proedures then y gets the value 5. The reasonis that all q now will all the global proedure p whih will update the globalvariable x so the loal variable x is unhanged.Dynami sope rules for variables and proeduresThe general idea is that to exeute the statement all p we shall exeute thebody of the proedure. This means that we have to keep trak of the assoiationof proedure names with proedure bodies. To failitate this we shall introduethe notion of a proedure environment. Given a proedure name the proedureenvironment envP will return the statement that is its body. So envP is an elementof

54 2 Operational Semantis[assns℄ envP ` hx := a, si ! s[x 7!A[[a℄℄s℄[skipns℄ envP ` hskip, si ! s[ompns℄ envP ` hS 1, si ! s 0, envP ` hS 2, s 0i ! s 00envP ` hS 1;S 2, si ! s 00[ifttns℄ envP ` hS 1, si ! s 0envP ` hif b then S 1 else S 2, si ! s 0if B[[b℄℄s = tt[if�ns℄ envP ` hS 2, si ! s 0envP ` hif b then S 1 else S 2, si ! s 0if B[[b℄℄s = �[whilettns℄ envP ` hS , si ! s 0, envP ` hwhile b do S , s 0i ! s 00envP ` hwhile b do S , si ! s 00if B[[b℄℄s = tt[while�ns℄ envP ` hwhile b do S , si ! sif B[[b℄℄s = �[blokns℄ hDV , si !D s 0, updP(DP , envP) ` hS , s 0i ! s 00envP ` hbegin DV DP S end, si ! s 00[DV(DV) 7�!s℄[allrens ℄ envP ` hS , si ! s 0envP ` hall p, si ! s 0 where envP p = STable 2.5: Natural semantis for Pro with dynami sope rulesEnvP = Pname ,! StmThe next step will be to extend the natural semantis to take the environ-ment into aount. We shall extend the transition system for statements to havetransitions of the formenvP ` hS , si ! s 0The presene of the environment means that we an always aess it and thereforeget hold of the bodies of delared proedures. The result of modifying Table 2.1to inorporate this extra information is shown in Table 2.5.

2.5 Bloks and proedures 55Conerning the rule for begin DV DP S end the idea is that we update theproedure environment so that the proedures delared in DP will be availablewhen exeuting S . Given a global environment envP and a delaration DP , theupdated proedure environment, updP(DP , envP), is spei�ed by:updP(pro p is S ; DP , envP) = updP(DP , envP [p 7!S ℄)updP(", envP) = envPAs the variable delarations do not need to aess the proedure environmentit is not neessary to extend the transition system for delarations with the extraomponent. So for variable delarations we still have transitions of the formhD , si !D s 0The relation is de�ned as for the language Blok, that is by Table 2.4.We an now omplete the spei�ation of the semantis of bloks and proedurealls. Note that in the rule [blokns℄ of Table 2.5 we use the updated environmentwhen exeuting the body of the blok. In the rule [allrens ℄ for proedure allswe make use of the information provided by the environment. It follows thatproedures will always be reursive.Exerise 2.38 Consider the following statement of Pro:begin pro fa is begin var z := x;if x = 1 then skipelse (x := x�1; all fa; y := z?y)end;(y := 1; all fa)endConstrut a derivation tree for the exeution of this statement from a state s wheres x = 3. 2Exerise 2.39 Use the semantis to verify that the statementbegin var x := 0;pro p is x := x ? 2;pro q is all p;begin var x := 5;pro p is x := x + 1;all q; y := x

56 2 Operational Semantis[allns℄ env 0P ` hS , si ! s 0envP ` hall p, si ! s 0where envP p = (S , env 0P)[allrens ℄ env 0P [p 7!(S , env 0P)℄ ` hS , si ! s 0envP ` hall p, si ! s 0where envP p = (S , env 0P)Table 2.6: Proedure alls in ase of mixed sope rules (hoose one)endendonsidered earlier does indeed assign the expeted value to y. 2Stati sope rules for proeduresWe shall now modify the semantis of Pro to speify stati sope rules for pro-edures. The �rst step will be to extend the proedure environment envP so thatproedure names are assoiated with their body as well as the proedure environ-ment at the point of delaration. To this end we de�neEnvP = Pname ,! Stm � EnvPThis de�nition may seem problemati beause EnvP is de�ned in terms of itself.However, this is not really a problem beause a onrete proedure environmentalways will be built from smaller environments starting with the empty proedureenvironment. The funtion updP updating the proedure environment an thenbe rede�ned as:updP(pro p is S ; DP , envP) = updP(DP , envP [p 7!(S , envP)℄)updP(", envP) = envPThe semantis of variable delarations are una�eted and so is the semantis ofmost of the statements. Compared with Table 2.5 we shall only need to modify therules for proedure alls. In the ase where the proedures of Pro are assumedto be non-reursive we simply onsult the proedure environment to determinethe body of the proedure and the environment at the point of delaration. Thisis expressed by the rule [allns℄ of Table 2.6. In the ase where the proedures ofPro are assumed to be reursive we have to make sure that ourrenes of all pinside the body of p refer to the proedure itself. We shall therefore update theproedure environment to ontain that information. This is expressed by the rule

2.5 Bloks and proedures 57[allrens ℄ of Table 2.6. The remaining axioms and rules are as in Tables 2.5 (without[allrens ℄) and 2.4. (Clearly a hoie should be made between [allns℄ or [allrens ℄.)Exerise 2.40 Construt a statement that illustrates the di�erene between thetwo rules for proedure all given in Table 2.6. Validate your laim by onstrutingderivation trees for the exeutions of the statement from a suitable state. 2Exerise 2.41 Use the semantis to verify that the statement of Exerise 2.39assigns the expeted value to y. 2Stati sope rules for variablesWe shall now modify the semantis of Pro to speify stati sope rules for vari-ables as well as proedures. To ahieve this we shall replae the states with twomappings: a variable environment that assoiates a loation with eah variable anda store that assoiates a value with eah loation. Formally, we de�ne a variableenvironment envV as an element ofEnvV = Var ! Lowhere Lo is a set of loations. For the sake of simpliity we shall take Lo = Z.A store sto is an element ofStore = Lo [f next g ! Zwhere `next' is a speial token used to hold the next free loation. We shall needa funtionnew: Lo ! Lothat given a loation will produe the next one. In our ase where Lo is Z wetake `new' to be the suessor funtion on the integers.So rather than having a single mapping s from variables to values we havesplit it into two mappings envV and sto and the idea is that s = sto Æ envV . Todetermine the value of a variable x we shall �rst� determine the loation l = envV x assoiated with x and then� determine the value sto l assoiated with the loation l .Similarly, to assign a value v to a variable x we shall �rst� determine the loation l = envV x assoiated with x and then� update the store to have sto l = v .

58 2 Operational Semantis[varns℄ hDV , envV [x 7!l ℄, sto[l 7!v ℄[next7!new l ℄i !D (env 0V , sto 0)hvar x := a; DV , envV , stoi !D (env 0V , sto 0)where v = A[[a℄℄(stoÆenvV) and l = sto next[nonens℄ h", envV , stoi !D (envV , sto)Table 2.7: Natural semantis for variable delarations using loationsThe initial variable environment ould for example map all variables to theloation 0 and the initial store ould for example map `next' to 1. The variableenvironment (and the store) is updated by the variable delarations. The transitionsystem for variable delarations is therefore modi�ed to have the formhDV , envV , stoi !D (env 0V , sto 0)beause a variable delaration will modify the variable environment as well as thestore. The relation is de�ned in Table 2.7. Note that we use `sto next' to determinethe loation l to be assoiated with x in the variable environment. Also the storeis updated to hold the orret value for l as well as `next'. Finally note that thedelared variables will get positive loations.To obtain stati soping for variables we shall extend the proedure environ-ment to hold the variable environment at the point of delaration. Therefore envPwill now be an element ofEnvP = Pname ,! Stm � EnvV � EnvPThe proedure environment is updated by the proedure delarations as before,the only di�erene being that the urrent variable environment is supplied as anadditional parameter. The funtion updP is now de�ned by:updP(pro p is S ; DP , envV , envP) =updP(DP , envV , envP [p 7!(S , envV , envP)℄)updP(", envV , envP) = envPFinally, the transition system for statements will have the form:envV , envP ` hS , stoi ! sto 0so given a variable environment and a proedure environment we get a relationshipbetween an initial store and a �nal store. The modi�ation of Tables 2.5 and 2.6is rather straightforward and is given in Table 2.8. Note that in the new rule forbloks there is no analogue of s 00[DV(DV) 7�!s℄ as the values of variables only anbe obtained by aessing the environment.

2.5 Bloks and proedures 59[assns℄ envV , envP ` hx := a, stoi ! sto[l 7!v ℄where l = envV x and v = A[[a℄℄(stoÆenvV)[skipns℄ envV , envP ` hskip, stoi ! sto[ompns℄ envV , envP ` hS 1, stoi ! sto 0, envV , envP ` hS 2, sto 0i ! sto 00envV , envP ` hS 1;S 2, stoi ! sto 00[ifttns℄ envV , envP ` hS 1, stoi ! sto 0envV , envP ` hif b then S 1 else S 2, stoi ! sto 0if B[[b℄℄(stoÆenvV) = tt[if�ns℄ envV , envP ` hS 2, stoi ! sto 0envV , envP ` hif b then S 1 else S 2, stoi ! sto 0if B[[b℄℄(stoÆenvV) = �[whilettns℄ envV , envP ` hS , stoi ! sto 0,envV , envP ` hwhile b do S , sto 0i ! sto 00envV , envP ` hwhile b do S , stoi ! sto 00if B[[b℄℄(stoÆenvV) = tt[while�ns℄ envV , envP ` hwhile b do S , stoi ! stoif B[[b℄℄(stoÆenvV) = �[blokns℄ hDV , envV , stoi !D (env 0V , sto 0),env 0V , env 0P ` hS , sto 0i ! sto 00envV , envP ` hbegin DV DP S end, stoi ! sto 00where env 0P = updP(DP , env 0V , envP)[allns℄ env 0V , env 0P ` hS , stoi ! sto 0envV , envP ` hall p, stoi ! sto 0where envP p = (S , env 0V , env 0P)[allrens ℄ env 0V , env 0P [p 7!(S , env 0V , env 0P)℄ ` hS , stoi ! sto 0envV , envP ` hall p, stoi ! sto 0where envP p = (S , env 0V , env 0P)Table 2.8: Natural semantis for Pro with stati sope rules

60 2 Operational SemantisExerise 2.42 Apply the natural semantis of Table 2.8 to the fatorial statementof Exerise 2.38 and a store where the loation for x has the value 3. 2Exerise 2.43 Verify that the semantis applied to the statement of Exerise 2.39gives the expeted result. 2Exerise 2.44 * An alternative semantis of the language While is de�ned bythe axioms and rules [assns℄, [skipns℄, [ompns℄, [ifttns℄, [if�ns℄, [whilettns℄ and [while�ns℄ ofTable 2.8. Formulate and prove the equivalene between this semantis and thatof Table 2.1. 2Exerise 2.45 Modify the syntax of proedure delarations so that proedurestake two all-by-value parameters:DP ::= pro p(x 1,x 2) is S ; DP j "S ::= � � � j all p(a1,a2)Proedure environments will now be elements ofEnvP = Pname ,! Var � Var � Stm � EnvV � EnvPModify the semantis given above to handle this language. In partiular, providenew rules for proedure alls: one for non-reursive proedures and another forreursive proedures. Construt statements that illustrate how the new rules areused. 2Exerise 2.46 Now onsider the language Pro and the task of ahieving mutualreursion. The proedure environment is now de�ned to be an element ofEnvP = Pname ,! Stm � EnvV � EnvP � DePThe idea is that if envP p = (S , env 0V , env 0P , D?P) then D?P ontains all theproedure delarations that are made in the same blok as p. De�ne upd0P byupd0P (pro p is S ; DP , envV , envP , D?P) =upd0P (DP , envV , envP [p 7!(S , envV , envP ,D?P)℄, D?P)upd0P (", envV , envP ,D?P) = envPNext rede�ne updP byupdP (DP , envV , envP) = upd0P (DP , envV , envP , DP)Modify the semantis of Pro so as to obtain mutual reursion among proeduresde�ned in the same blok. Illustrate how the new rules are used on an interestingstatement of your hoie.(Hint: Convine yourself, that [allrens ℄ is the only rule that needs to be hanged;then onsider whether or not the funtion updP might be useful in the new de�-nition of [allrens ℄.) 2

2.5 Bloks and proedures 61Exerise 2.47 We shall onsider a variant of the semantis where we use thevariable environment rather than the store to hold the next free loation. Soassume thatEnvV = Var [f next g ! Loand Store = Lo ! ZAs before we shall write sto Æ envV for the state obtained by �rst using envV to�nd the loation of the variable and then sto to �nd the value of the loation. Thelauses of Table 2.7 are now replaed byhDV , envV [x 7!l ℄[next7!new l ℄, sto[l 7!v ℄i !D (env 0V , sto 0)hvar x := a; DV , envV , stoi !D (env 0V , sto 0)where v = A[[a℄℄(stoÆenvV) and l = envV nexth", envV , stoi !D (envV , sto)Construt a statement that omputes di�erent results under the two variants of thesemantis. Validate your laim by onstruting derivation trees for the exeutionsof the statement from a suitable state. 2

62 2 Operational Semantis

Chapter 3Provably Corret ImplementationA formal spei�ation of the semantis of a programming language is useful whenimplementing it. In partiular, it beomes possible to argue about the orretnessof the implementation. We shall illustrate this by showing how to translate thelanguage While into a strutured form of assembler ode for an abstrat mahineand we shall then prove that the translation is orret. The idea is that we �rst de-�ne the meaning of the abstrat mahine instrutions by an operational semantis.Then we de�ne translation funtions that will map expressions and statements inthe While language into sequenes of suh instrutions. The orretness resultwill then state that if we� translate a program into ode, and� exeute the ode on the abstrat mahine,then we get the same result as was spei�ed by the semanti funtions Sns andSsos of the previous hapter.3.1 The abstrat mahineWhen speifying the abstrat mahine it is onvenient �rst to present its on�gu-rations and next its instrutions and their meanings.The abstrat mahine AM has on�gurations of the form h, e, si where� is the sequene of instrutions (or ode) to be exeuted,� e is the evaluation stak, and� s is the storage.We use the evaluation stak to evaluate arithmeti and boolean expressions. For-mally, it is a list of values, so writing 63

64 3 Provably Corret ImplementationStak = (Z [T)?we have e 2 Stak. For the sake of simpliity we shall assume that the storageis similar to the state, that is s 2 State, and it is used to hold the values ofvariables.The instrutions of AM are given by the abstrat syntaxinst ::= push-n j add j mult j subj true j false j eq j le j and j negj feth-x j store-xj noop j branh(,) j loop(,) ::= " j inst :where " is the empty sequene. We shall write Code for the syntati ategory ofsequenes of instrutions, so is a meta-variable ranging over Code. Thereforewe haveh, e, si 2 Code � Stak � StateA on�guration is a terminal (or �nal) on�guration if its ode omponent is theempty sequene, that is if it has the form h", e, si.The semantis of the instrutions of the abstrat mahine is given by an oper-ational semantis. As in the previous hapter it will be spei�ed by a transitionsystem. The on�gurations have the form h, e, si as desribed above and thetransition relation � spei�es how to exeute the instrutions:h, e, si � h 0, e 0, s 0iThe idea is that one step of exeution will transform the on�guration h, e, siinto h 0, e 0, s 0i. The relation is de�ned by the axioms of Table 3.1 where we(ambiguously) use the notation `:' both for appending two instrution sequenesand for prepending an element to a sequene. The evaluation stak is representedas a sequene of elements. It has the top of the stak to the left and we shall write" for the empty sequene.In addition to the usual arithmeti and boolean operations we have six instru-tions that modify the evaluation stak: The operation push-n pushes a onstantvalue n onto the stak and true and false push the onstants tt and �, respe-tively, onto the stak. The operation feth-x pushes the value bound to x ontothe stak whereas store-x pops the topmost element o� the stak and updates thestorage so that the popped value is bound to x . The instrution branh(1, 2)will also hange the ow of ontrol: If the top of the stak is the value tt (that issome boolean expression has been evaluated to true) then the stak is popped and1 is to be exeuted next. Otherwise, if the top element of the stak is � then itwill be popped and 2 will be exeuted next.

3.1 The abstrat mahine 65hpush-n:, e, si � h, N [[n℄℄:e, sihadd:, z 1:z 2:e, si � h, (z 1+z 2):e, si if z 1, z 22Zhmult:, z 1:z 2:e, si � h, (z 1?z 2):e, si if z 1, z 22Zhsub:, z 1:z 2:e, si � h, (z 1�z 2):e, si if z 1, z 22Zhtrue:, e, si � h, tt:e, sihfalse:, e, si � h, �:e, siheq:, z 1:z 2:e, si � h, (z 1=z 2):e, si if z 1, z 22Zhle:, z 1:z 2:e, si � h, (z 1�z 2):e, si if z 1, z 22Zhand:, t1:t2:e, si �8<: h; tt : e; sih;� : e; si if t1=tt and t2=ttif t1=� or t2=�, t1, t22Thneg:, t :e, si � 8<: h;� : e; sih; tt : e; si if t=ttif t=�hfeth-x :, e, si � h, (s x):e, sihstore-x :, z :e, si � h, e, s[x 7!z ℄i if z2Zhnoop:, e, si � h, e, sihbranh(1, 2):, t :e, si � 8<: h1 : ; e; sih2 : ; e; si if t=ttif t=�hloop(1, 2):, e, si �h1:branh(2:loop(1, 2), noop):, e, siTable 3.1: Operational semantis for AMThere are two instrutions that hange the ow of ontrol. The instrutionbranh(1, 2) will be used to implement the onditional: as desribed aboveit will hoose the ode omponent 1 or 2 depending on the urrent value ontop of the stak. If the top of the stak is not a truth value the mahine willhalt as there is no next on�guration (sine the meaning of branh(� � �,� � �) isnot de�ned in that ase). A looping onstrut suh as the while-onstrut ofWhile an be implemented using the instrution loop(1, 2). The semantisof this instrution is de�ned by rewriting it to a ombination of other onstrutsinluding the branh-instrution and itself. We shall see shortly how this an beused.The operational semantis of Table 3.1 is indeed a strutural operational se-

66 3 Provably Corret Implementationmantis for AM. Corresponding to the derivation sequenes of Chapter 2 we shallde�ne a omputation sequene for AM. Given a sequene of instrutions and astorage s, a omputation sequene for and s is either� a �nite sequene0, 1, 2, � � � , kof on�gurations satisfying 0 = h, ", si and i � i+1 for 0�i<k, k�0, andwhere there is no suh that k � , or it is� an in�nite sequene0, 1, 2, � � �of on�gurations satisfying 0 = h, ", si and i � i+1 for 0�i.Note that initial on�gurations always have an empty evaluation stak. A ompu-tation sequene is� terminating if and only if it is �nite, and� looping if and only if it is in�nite.A terminating omputation sequene may end in a terminal on�guration (that isa on�guration with an empty ode omponent) or in a stuk on�guration (forexample hadd, ", si).Example 3.1 Consider the instrution sequenepush-1:feth-x:add:store-xAssuming that the initial storage s has s x = 3 we gethpush-1:feth-x:add:store-x, ", si� hfeth-x:add:store-x, 1, si� hadd:store-x, 3:1, si� hstore-x, 4, si� h", ", s[x7!4℄iThe omputation now stops beause there is no next step. This is an example ofa terminating omputation sequene. 2Example 3.2 Consider the odeloop(true, noop)

3.1 The abstrat mahine 67We havehloop(true, noop), ", si� htrue:branh(noop:loop(true, noop), noop), ", si� hbranh(noop:loop(true, noop), noop), tt, si� hnoop:loop(true, noop), ", si� hloop(true, noop), ", si� � � �and the unfolding of the loop-instrution is repeated. This is an example of alooping omputation sequene. 2Exerise 3.3 Consider the odepush-0:store-z:feth-x:store-r:loop(feth-r:feth-y:le,feth-y:feth-r:sub:store-r:push-1:feth-z:add:store-z)Determine the funtion omputed by this ode. 2Properties of AMThe semantis we have spei�ed for the abstrat mahine is onerned with theexeution of individual instrutions and is therefore lose in spirit to the struturaloperational semantis studied in Chapter 2. When proving the orretness of theode generation we shall need a few results analogous to those holding for thestrutural operational semantis. As their proofs follow the same lines as thosefor the strutural operational semantis we shall leave them as exerises and onlyreformulate the proof tehnique from Setion 2.2:Indution on the Length of Computation Sequenes1: Prove that the property holds for all omputation sequenes of length 0.2: Prove that the property holds for all other omputation sequenes: As-sume that the property holds for all omputation sequenes of length atmost k (this is alled the indution hypothesis) and show that it holds foromputation sequenes of length k+1.The indution step of a proof following this tehnique will often be done by a aseanalysis on the �rst instrution of the ode omponent of the on�guration.

68 3 Provably Corret ImplementationExerise 3.4 (Essential) By analogy with Exerise 2.21 prove thatif h1, e1, si �k h 0, e 0, s 0i then h1:2, e1:e2, si �k h 0:2, e 0:e2, s 0iThis means that we an extend the ode omponent as well as the stak omponentwithout hanging the behaviour of the mahine. 2Exerise 3.5 (Essential) By analogy with Lemma 2.19 prove that ifh1:2, e, si �k h", e 00, s 00ithen there exists a on�guration h", e 0, s 0i and natural numbers k1 and k2 withk1+k2=k suh thath1, e, si �k1 h", e 0, s 0i and h2, e 0, s 0i �k2 h", e 00, s 00iThis means that the exeution of a omposite sequene of instrutions an be splitinto two piees. 2The notion of determinism is de�ned as for the strutural operational semantis.So the semantis of an abstrat mahine is deterministi if for all hoies of , 0and 00: � 0 and � 00 imply 0 = 00Exerise 3.6 (Essential) Show that the mahine semantis of Table 3.1 is de-terministi. Dedue that there is exatly one omputation sequene starting in aon�guration h, e, si. 2The exeution funtion MWe shall de�ne the meaning of a sequene of instrutions as a (partial) funtionfrom State to State:M: Code ! (State ,! State)It is given byM[[℄℄ s = 8<: s 0 if h, ", si �� h", e, s 0iundef otherwiseThe funtion is well-de�ned beause of Exerise 3.6. Note that the de�nition doesnot require the stak omponent of the terminal on�guration to be empty but itdoes require the ode omponent to be so.The abstrat mahine AM may seem far removed from more traditional ma-hine arhitetures. In the next few exerises we shall gradually bridge this gap.

3.2 Spei�ation of the translation 69Exerise 3.7 AM refers to variables by their name rather than by their address.The abstrat mahine AM1 di�ers from AM in that� the on�gurations have the form h, e, mi where and e are as in AM andm, the memory , is a (�nite) list of values, that is m 2 Z?, and� the instrutions feth-x and store-x are replaed by instrutions get-nand put-n where n is a natural number (an address).Speify the operational semantis of the mahine. You may write m[n℄ to seletthe nth value in the list m (when n is positive but less than or equal to the lengthof m). What happens if we referene an address that is outside the memory? 2Exerise 3.8 The next step is to get rid of the operations branh(� � �,� � �) andloop(� � �,� � �). The idea is to introdue instrutions for de�ning labels and forjumping to labels. The abstrat mahine AM2 di�ers from AM1 (of Exerise 3.7)in that� the on�gurations have the form hp, , e, mi where , e and m are as beforeand p is the program ounter (a natural number) pointing to an instrutionin , and� the instrutions branh(� � �,� � �) and loop(� � �,� � �) are replaed by the in-strutions label-l , jump-l and jumpfalse-l where l is a label (a naturalnumber).The idea is that we will exeute the instrution in that p points to and in mostases this will ause the program ounter to be inremented by 1. The instru-tion label-l has no e�et exept updating the program ounter. The instrutionjump-l will move the program ounter to the unique instrution label-l (if itexists). The instrution jumpfalse-l will only move the program ounter to theinstrution label-l if the value on top of the stak is �; if it is tt the programounter will be inremented by 1.Speify an operational semantis for AM2. You may write [p℄ for the in-strution in pointed to by p (if p is positive and less than or equal to thelength of). What happens if the same label is de�ned more than one? 2Exerise 3.9 Finally, we shall onsider an abstrat mahine AM3 where the la-bels of the instrutions jump-l and jumpfalse-l of Exerise 3.8 are absolute ad-dresses; so jump-7 means jump to the 7th instrution of the ode (rather than tothe instrution label-7). Speify the operational semantis of the mahine. Whathappens if we jump to an instrution that is not in the ode? 23.2 Spei�ation of the translationWe shall now study how to generate ode for the abstrat mahine.

70 3 Provably Corret ImplementationExpressionsArithmeti and boolean expressions will be evaluated on the evaluation stak ofthe mahine and the ode to be generated must e�et this. This is aomplishedby the (total) funtionsCA: Aexp ! Codeand CB: Bexp ! Codespei�ed in Table 3.2. Note that the ode generated for binary expressions onsistsCA[[n℄℄ = push-nCA[[x ℄℄ = feth-xCA[[a1+a2℄℄ = CA[[a2℄℄:CA[[a1℄℄:addCA[[a1 ? a2℄℄ = CA[[a2℄℄:CA[[a1℄℄:multCA[[a1�a2℄℄ = CA[[a2℄℄:CA[[a1℄℄:subCB[[true℄℄ = trueCB[[false℄℄ = falseCB[[a1 = a2℄℄ = CA[[a2℄℄:CA[[a1℄℄:eqCB[[a1�a2℄℄ = CA[[a2℄℄:CA[[a1℄℄:leCB[[:b℄℄ = CB[[b℄℄:negCB[[b1^b2℄℄ = CB[[b2℄℄:CB[[b1℄℄:andTable 3.2: Translation of expressionsof the ode for the right argument followed by that for the left argument and�nally the appropriate instrution for the operator. In this way it is ensuredthat the arguments appear on the evaluation stak in the order required by theinstrutions (in Table 3.1). Note that CA and CB are de�ned ompositionally.Example 3.10 For the arithmeti expression x+1 we alulate the ode as fol-lows: CA[[x+1℄℄ = CA[[1℄℄:CA[[x℄℄:add = push-1:feth-x :add 2Exerise 3.11 It is lear that A[[(a1+a2)+a3℄℄ equals A[[a1+(a2+a3)℄℄. Show thatit is not the ase that CA[[(a1+a2)+a3℄℄ equals CA[[a1+(a2+a3)℄℄. Nonetheless,show that CA[[(a1+a2)+a3℄℄ and CA[[a1+(a2+a3)℄℄ do in fat behave similar to oneanother. 2

3.2 Spei�ation of the translation 71StatementsThe translation of statements into abstrat mahine ode is given by the (total)funtionCS: Stm ! Codespei�ed in Table 3.3. The ode generated for an arithmeti expression a ensuresCS[[x := a℄℄ = CA[[a℄℄:store-xCS[[skip℄℄ = noopCS[[S 1;S 2℄℄ = CS[[S 1℄℄:CS [[S 2℄℄CS[[if b then S 1 else S 2℄℄ = CB[[b℄℄:branh(CS[[S 1℄℄,CS [[S 2℄℄)CS[[while b do S ℄℄ = loop(CB[[b℄℄,CS[[S ℄℄)Table 3.3: Translation of statements in Whilethat the value of the expression is on top of the evaluation stak when it hasbeen omputed. So in the ode for x := a it suÆes to append the ode for awith the instrution store-x . This instrution assigns x the appropriate valueand additionally pops the stak. For the skip-statement we generate the noop-instrution. For sequening of statements we just onatenate the two instrutionsequenes. When generating ode for the onditional, the ode for the booleanexpression will ensure that a truth value will be plaed on top of the evaluationstak and the branh-instrution will then inspet (and pop) that value andselet the appropriate piee of ode. Finally, the ode for the while-onstrut usesthe loop-instrution. Again we may note that CS is de�ned in a ompositionalmanner.Example 3.12 The ode generated for the fatorial statement onsidered earlieris as follows:CS[[y:=1; while :(x=1) do (y:=y ? x; x:=x�1)℄℄= CS[[y:=1℄℄:CS[[while :(x=1) do (y:=y ? x; x:=x�1)℄℄= CA[[1℄℄:store-y:loop(CB[[:(x=1)℄℄,CS [[y:=y ? x; x:=x�1℄℄)= push-1:store-y:loop(CB[[x=1℄℄:neg,CS[[y:=y ? x℄℄:CS[[x:=x�1℄℄)...= push-1:store-y:loop(push-1:feth-x:eq:neg,feth-x:feth-y:mult:store-y:push-1:feth-x:sub:store-x) 2

72 3 Provably Corret ImplementationExerise 3.13 Use CS to generate ode for the statementz:=0; while y�x do (z:=z+1; x:=x�y)Trae the omputation of the ode starting from a storage where x is 17 and yis 5. 2Exerise 3.14 Extend While with the onstrut repeat S until b and speifyhow to generate ode for it. Note that the de�nition has to be ompositional andthat it is not neessary to extend the instrution set of the abstrat mahine. 2Exerise 3.15 Extend While with the onstrut for x := a1 to a2 do S andspeify how to generate ode for it. As in Exerise 3.14 the de�nition has to beompositional but you may have to introdue an instrution opy that dupliatesthe element on top of the evaluation stak. 2The semanti funtion SamThe meaning of a statement S an now be obtained by �rst translating it intoode for AM and next exeuting the ode on the abstrat mahine. The e�et ofthis is expressed by the funtionSam: Stm ! (State ,! State)de�ned bySam[[S ℄℄ = (M Æ CS)[[S ℄℄Exerise 3.16 Modify the ode generation so as to translateWhile into ode forthe abstrat mahine AM1 of Exerise 3.7. You may assume the existene of afuntionenv : Var ! Nthat maps variables to their addresses. Apply the ode generation funtion to thefatorial statement of Exerise 1.1 and exeute the ode so obtained starting froma memory where x is 3. 2Exerise 3.17 Modify the ode generation so as to translateWhile into ode forthe abstrat mahine AM2 of Exerise 3.8. Be areful to generate unique labels,for example by having \the next unused label" as an additional parameter to theode generation funtions. Apply the ode generation funtion to the fatorialstatement and exeute the ode so obtained starting from a memory where x hasthe value 3. 2

3.3 Corretness 733.3 CorretnessThe orretness of the implementation amounts to showing that, if we �rst trans-late a statement into ode for AM and then exeute that ode, then we mustobtain the same result as spei�ed by the operational semantis of While.ExpressionsThe orretness of the implementation of arithmeti expressions is expressed bythe following lemma:Lemma 3.18 For all arithmeti expressions a we havehCA[[a℄℄, ", si �� h", A[[a℄℄s, siFurthermore, all intermediate on�gurations of this omputation sequene willhave a non-empty evaluation stak.Proof: The proof is by strutural indution on a. Below we shall give the prooffor three illustrative ases, leaving the remaining ones as an exerise.The ase n: We have CA[[n℄℄ = push-n and from Table 3.1 we gethpush-n, ", si � h", N [[n℄℄, siSine A[[n℄℄s = N [[n℄℄ (see Table 1.1) we have ompleted the proof in this ase.The ase x : We have CA[[x ℄℄ = feth-x and from Table 3.1 we gethfeth-x , ", si � h", (s x), siSine A[[x ℄℄s = s x this is the required result.The ase a1+a2: We have CA[[a1+a2℄℄ = CA[[a2℄℄:CA[[a1℄℄:add. The indutionhypothesis applied to a1 and a2 gives thathCA[[a1℄℄, ", si �� h", A[[a1℄℄s, siand hCA[[a2℄℄, ", si �� h", A[[a2℄℄s, siIn both ases all intermediate on�gurations will have a non-empty evaluationstak. Using Exerise 3.4 we get thathCA[[a2℄℄:CA[[a1℄℄:add, ", si �� hCA[[a1℄℄:add, A[[a2℄℄s, siApplying the exerise one more we get that

74 3 Provably Corret ImplementationhCA[[a1℄℄:add, A[[a2℄℄s, si �� hadd, (A[[a1℄℄s):(A[[a2℄℄s), siUsing the transition relation for add given in Table 3.1 we gethadd, (A[[a1℄℄s):(A[[a2℄℄s), si � h", A[[a1℄℄s+A[[a2℄℄s, siIt is easy to hek that all intermediate on�gurations have a non-empty evaluationstak. Sine A[[a1+a2℄℄s = A[[a1℄℄s + A[[a2℄℄s we have the desired result. 2We have a similar result for boolean expressions:Exerise 3.19 (Essential) Show that for all boolean expressions b we havehCB[[b℄℄, ", si �� h", B[[b℄℄s, siFurthermore, show that all intermediate on�gurations of this omputation se-quene will have a non-empty evaluation stak. 2StatementsWhen formulating the orretness of the result for statements we have a hoiebetween using� the natural semantis, or� the strutural operational semantis.Here we shall use the natural semantis but in the next setion we sketh the proofin the ase where the strutural operational semantis is used.The orretness of the translation of statements is expressed by the followingtheorem:Theorem 3.20 For every statement S of While we have Sns[[S ℄℄ = Sam[[S ℄℄.This theorem relates the behaviour of a statement under the natural semantiswith the behaviour of the ode on the abstrat mahine under its operationalsemantis. In analogy with Theorem 2.26 it expresses two properties:� If the exeution of S from some state terminates in one of the semantis thenit also terminates in the other and the resulting states will be equal.� Furthermore, if the exeution of S from some state loops in one of the se-mantis then it will also loop in the other.The theorem is proved in two stages as expressed by Lemmas 3.21 and 3.22 below.We shall �rst prove:

3.3 Corretness 75
Lemma 3.21 For every statement S of While and states s and s 0, we have thatif hS , si ! s 0 then hCS[[S ℄℄, ", si �� h", ", s 0iSo if the exeution of S from s terminates in the natural semantis then theexeution of the ode for S from storage s will terminate and the resulting statesand storages will be equal.Proof: We proeed by indution on the shape of the derivation tree for hS , si!s 0.The ase [assns℄: We assume thathx :=a, si!s 0where s 0=s[x 7!A[[a℄℄s℄. From Table 3.3 we haveCS[[x :=a℄℄ = CA[[a℄℄:store-xFrom Lemma 3.18 applied to a we gethCA[[a℄℄, ", si �� h", A[[a℄℄s, siand then Exerise 3.4 gives the �rst part ofhCA[[a℄℄:store-x , ", si �� hstore-x , (A[[a℄℄s), si� h", ", s[x 7!A[[a℄℄s℄iand the seond part follows from the operational semantis for store-x given inTable 3.1. Sine s 0 = s[x 7!A[[a℄℄s℄ this ompletes the proof.The ase [skipns℄: Straightforward.The ase [ompns℄: Assume thathS 1;S 2, si ! s 00holds beausehS 1, si ! s 0 and hS 2, s 0i ! s 00From Table 3.3 we haveCS[[S 1;S 2℄℄ = CS[[S 1℄℄:CS[[S 2℄℄We shall now apply the indution hypothesis to the premises hS 1, si ! s 0 andhS 2, s 0i ! s 00 and we gethCS[[S 1℄℄, ", si �� h", ", s 0i

76 3 Provably Corret Implementationand hCS[[S 2℄℄, ", s 0i �� h", ", s 00iUsing Exerise 3.4 we then havehCS[[S 1℄℄:CS[[S 2℄℄, ", si �� hCS[[S 2℄℄, ", s 0i �� h", ", s 00iand the result follows.The ase [if ttns℄: Assume thathif b then S 1 else S 2, si ! s 0beause B[[b℄℄s = tt andhS 1, si ! s 0From Table 3.3 we get thatCS[[if b then S 1 else S 2℄℄ = CB[[b℄℄:branh(CS[[S 1℄℄, CS[[S 2℄℄)Using Exerises 3.19 and 3.4 we get the �rst part ofhCB[[b℄℄:branh(CS[[S 1℄℄, CS[[S 2℄℄), ", si�� hbranh(CS[[S 1℄℄, CS[[S 2℄℄), (B[[b℄℄s), si� hCS[[S 1℄℄, ", si�� h", ", s 0iThe seond part follows from the de�nition of the meaning of the instrutionbranh in the ase where the element on top of the evaluation stak is tt (whihis the value of B[[b℄℄s). The third part of the omputation sequene omes fromapplying the indution hypothesis to the premise hS 1, si ! s 0.The ase [if�ns℄: Analogous.The ase [while ttns℄: Assume thathwhile b do S , si ! s 00beause B[[b℄℄s = tt,hS , si ! s 0 and hwhile b do S , s 0i ! s 00From Table 3.3 we haveCS[[while b do S ℄℄ = loop(CB[[b℄℄, CS[[S ℄℄)and get

3.3 Corretness 77hloop(CB[[b℄℄, CS[[S ℄℄), ", si� hCB[[b℄℄:branh(CS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), noop), ", si�� hbranh(CS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), noop), (B[[b℄℄s), si� hCS [[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), ", siHere the �rst part follows from the meaning of the loop-instrution (see Table 3.1)and the seond part from Exerises 3.19 and 3.4. Sine B[[b℄℄s = tt the third partfollows from the meaning of the branh-instrution. The indution hypothesisan now be applied to the premises hS , si ! s 0 and hwhile b do S , s 0i ! s 00 andgives hCS[[S ℄℄, ", si �� h", ", s 0ihloop(CB[[b℄℄, CS[[S ℄℄), ", s 0i �� h", ", s 00iso using Exerise 3.4 we gethCS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), ", si�� hloop(CB[[b℄℄, CS[[S ℄℄), ", s 0i�� h", ", s 00iThe ase [while�ns℄: Assume that hwhile b do S , si ! s 0 holds beause B[[b℄℄s = �and then s = s 0. We havehloop(CB[[b℄℄, CS[[S ℄℄), ", si� hCB[[b℄℄:branh(CS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), noop), ", si�� hbranh(CS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), noop), (B[[b℄℄s), si� hnoop, ", si� h", ", siusing the de�nitions of the loop-, branh- and noop-instrutions in Table 3.1together with Exerises 3.19 and 3.4. 2This proves Lemma 3.21. The seond part of the theorem follows from:Lemma 3.22 For every statement S of While and states s and s 0, we have thatif hCS[[S ℄℄, ", si �k h", e, s 0i then hS , si ! s 0 and e = "So if the exeution of the ode for S from a storage s terminates then the naturalsemantis of S from s will terminate in a state being equal to the storage of theterminal on�guration.

78 3 Provably Corret ImplementationProof: We shall proeed by indution on the length k of the omputation sequeneof the abstrat mahine. If k = 0 the result holds vauously beause CS[[S ℄℄ = "annot our. So assume that it holds for k � k0 and we shall prove that it holdsfor k = k0+1. We proeed by ases on the statement S .The ase x :=a: We then have CS[[x := a℄℄ = CA[[a℄℄:store-x so assume thathCA[[a℄℄:store-x , ", si �k0+1 h", e, s 0iThen by Exerise 3.5 there must be a on�guration of the form h", e 00, s 00i suhthat hCA[[a℄℄, ", si �k1 h", e 00, s 00ihstore-x , e 00, s 00i �k2 h", e, s 0iwhere k1 + k2 = k0 + 1. From Lemma 3.18 and Exerise 3.6 we get that e 00 mustbe (A[[a℄℄s) and s 00 must be s. Using the semantis of store-x we therefore seethat s 0 is s[x 7!A[[a℄℄s℄ and e is ". It now follows from [assns℄ that hx :=a, si!s 0.The ase skip: Straightforward.The ase S 1;S 2: Assume thathCS[[S 1℄℄:CS[[S 2℄℄, ", si �k0+1 h", e, s 00iThen by Exerise 3.5 there must be a on�guration of the form h", e 0, s 0i suh thathCS[[S 1℄℄, ", si �k1 h", e 0, s 0ihCS[[S 2℄℄, e 0, s 0i �k2 h", e, s 00iwhere k1 + k2 = k0 + 1. The indution hypothesis an now be applied to the �rstof these omputation sequenes beause k1 � k0 and giveshS 1, si ! s 0 and e 0 = "Thus we have hCS[[S 2℄℄, ", s 0i �k2 h", e, s 00i and sine k2 � k0 the indutionhypothesis an be applied to this omputation sequene and giveshS 2, s 0i ! s 00 and e = "The rule [ompns℄ now gives hS 1;S 2, si ! s 00 as required.The ase if b then S 1 else S 2: The ode generated for the onditional isCB[[b℄℄:branh(CS[[S 1℄℄, CS[[S 2℄℄)so we assume thathCB[[b℄℄:branh(CS[[S 1℄℄, CS[[S 2℄℄), ", si �k0+1 h", e, s 0i

3.3 Corretness 79Then by Exerise 3.5 there must be a on�guration of the form h", e 00, s 00i suhthat hCB[[b℄℄, ", si �k1 h", e 00, s 00iand hbranh(CS[[S 1℄℄, CS[[S 2℄℄), e 00, s 00i �k2 h", e, s 0iwhere k1 + k2 = k0 + 1. From Exerises 3.19 and 3.6 we get that e 00 must beB[[b℄℄s and s 00 must be s. We shall now assume that B[[b℄℄s = tt. Then there mustbe a on�guration hCS[[S 1℄℄, ", si suh that(CS[[S 1℄℄, ", si �k2�1 h", e, s 0iThe indution hypothesis an now be applied to this omputation sequene beausek2 � 1 � k0 and we gethS 1, si ! s 0 and e = "The rule [if ttns℄ gives the required hif b then S 1 else S 2, si ! s 0. The ase whereB[[b℄℄s = � is similar.The ase while b do S : The ode for the while-loop is loop(CB[[b℄℄, CS[[S ℄℄) andwe therefore assume thathloop(CB[[b℄℄, CS[[S ℄℄), ", si �k0+1 h", e, s 00iUsing the de�nition of the loop-instrution this means that the omputationsequene an be rewritten ashloop(CB[[b℄℄, CS[[S ℄℄), ", si� hCB[[b℄℄:branh(CS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), noop), ", si�k0 h", e, s 00iAording to Exerise 3.5 there will then be a on�guration h", e 0, s 0i suh thathCB[[b℄℄, ", si �k1 h", e 0, s 0iand hbranh(CS[[S ℄℄:loop(CB[[b℄℄, CS [[S ℄℄), noop), e 0, s 0i �k2 h", e, s 00iwhere k1 + k2 = k0. From Exerises 3.19 and 3.6 we get e 0 = B[[b℄℄s and s 0 = s.We now have two ases.In the �rst ase assume that B[[b℄℄s = �. We then have

80 3 Provably Corret Implementationhbranh(CS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), noop), B[[b℄℄s, si� hnoop, ", si� h", ", siso e = " and s = s 00. Using rule [while�ns℄ we get hwhile b do S , si ! s 00 as required.In the seond ase assume that B[[b℄℄s = tt. Then we havehbranh(CS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), noop), B[[b℄℄s, si� hCS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), ", si�k2�1h", e, s 00iWe then proeed very muh as in the ase of the omposition statement and get aon�guration h", e 0, s 0i suh thathCS[[S ℄℄, ", si �k3 h", e 0, s 0ihloop(CB[[b℄℄, CS[[S ℄℄), e 0, s 0i �k4 h", e, s 00iwhere k3 + k4 = k2 � 1. Sine k3 � k0 we an apply the indution hypothesis tothe �rst of these omputation sequenes and gethS , si ! s 0 and e 0 = "We an then use that k4 � k0 and apply the indution hypothesis to the ompu-tation sequene hloop(CB[[b℄℄, CS [[S ℄℄), ", s 0i �k4 h", e, s 00i and gethwhile b do S , s 0i ! s 00 and e = "Using rule [while ttns℄ we then get hwhile b do S , si ! s 00 as required. This ompletesthe proof of the lemma. 2The proof tehnique employed in the above proof may be summarized as fol-lows: Proof Summary for While:Corretness of Implementation1: Prove by indution on the shape of derivation trees that for eah derivationtree in the natural semantis there is a orresponding �nite omputationsequene on the abstrat mahine.2: Prove by indution on the length of omputation sequenes that for eah �-nite omputation sequene obtained from exeuting a statement ofWhileon the abstrat mahine there is a orresponding derivation tree in thenatural semantis.

3.4 An alternative proof tehnique 81Note the similarities between this proof tehnique and that for showing the equiv-alene of two operational semantis (see Setion 2.3). Again one has to be arefulwhen adapting this approah to a language with additional programming on-struts or a di�erent mahine language.Exerise 3.23 Consider the \optimized" ode generation funtion CS 0 that is asCS of Table 3.3 exept that CS 0[[skip℄℄ = ". Would this ompliate the proof ofTheorem 3.20? 2Exerise 3.24 Extend the proof of Theorem 3.20 to hold for theWhile languageextended with repeat S until b. The ode generated for this onstrut wasstudied in Exerise 3.14 and its natural semantis in Exerise 2.7. 2Exerise 3.25 Prove that the ode generated for AM1 in Exerise 3.16 is orret.What assumptions do you need to make about env? 23.4 An alternative proof tehniqueIn Theorem 3.20 we proved the orretness of the implementation with respet tothe natural semantis. It is obvious that the implementation will also be orretwith respet to the strutural operational semantis, that isSsos[[S ℄℄ = Sam[[S ℄℄ for all statements S of Whilebeause we showed in Theorem 2.26 that the natural semantis is equivalent tothe strutural operational semantis. However, one might argue that it would beeasier to give a diret proof of the orretness of the implementation with respetto the strutural operational semantis, beause both approahes are based on theidea of speifying the individual steps of the omputation. We shall omment uponthis shortly.A diret proof of the orretness result with respet to the strutural opera-tional semantis ould proeed as follows. We shall de�ne a bisimulation relation� between the on�gurations of the strutural operational semantis and those ofthe operational semantis for AM. It is de�ned byhS , si � hCS[[S ℄℄, ", sis � h", ", sifor all statements S and states s. The �rst stage will then be to prove that when-ever one step of the strutural operational semantis hanges the on�gurationthen there is a sequene of steps in the semantis of AM that will make a similarhange in the on�guration of the abstrat mahine:Exerise 3.26 * Show that if

82 3 Provably Corret Implementationsos � am and sos) 0sosthen there exists a on�guration 0am suh thatam �+ 0am and 0sos � 0amArgue that this means that if hS , si)� s 0 then hCS[[S ℄℄, ", si �� h", ", s 0i. 2The seond part of the proof is to show that whenever AM makes a sequeneof moves from a on�guration with an empty evaluation stak to another on�gu-ration with an empty evaluation stak, then the strutural operational semantisan make a similar hange of on�gurations. Note that AM may have to makemore than one step to arrive at a on�guration with an empty stak, due to theway it evaluates expressions; in the strutural operational semantis, however,expressions are evaluated as part of a single step.Exerise 3.27 ** Assume that sos � 1am and 1am � 2am � � � � � kamwhere k>1 and only 1am and kam have empty evaluation staks (that is, are of theform h, ", si). Show that there exists a on�guration 0sos suh thatsos) 0sos and 0sos � kamArgue that this means that if hCS[[S ℄℄, ", si �� h", ", s 0i then hS , si)� s 0. 2Exerise 3.28 Show that Exerises 3.26 and 3.27 together onstitute a diretproof of Ssos[[S ℄℄ = Sam[[S ℄℄, for all statements S of While. 2The suess of this approah relies on the two semantis proeeding in lok-step: that one is able to �nd on�gurations in the two derivation sequenes thatorrespond to one another (as spei�ed by the bisimulation relation). Often thisis not possible and then one has to raise the level of abstration for one of thesemantis. This is exatly what happens when the strutural operational semantisis replaed by the natural semantis: we do not are about the individual steps ofthe exeution but only on the result.The proof tehnique employed in the above sketh of proof may be summarizedas follows:

3.4 An alternative proof tehnique 83Proof Summary for While:Corretness of Implementation using Bisimulation1: Prove that one step in the strutural operational semantis an be simu-lated by a non-empty sequene of steps on the abstrat mahine. Showthat this extends to sequenes of steps in the strutural operationalsemantis.2: Prove that a arefully seleted non-empty sequene of steps on the ab-strat mahine an be simulated by a step in the strutural operationalsemantis. Show that this extends to more general sequenes of steps onthe abstrat mahine.Again, this method needs to be modi�ed when onsidering a programming lan-guage with additional onstruts or a di�erent abstrat mahine.Exerise 3.29 * Consider the following, seemingly innoent, modi�ation of thestrutural operational semantis of Table 2.2 in whih [whilesos℄ is replaed by thetwo axioms:hwhile b do S , si) hS ; while b do S , si if B[[b℄℄s = tthwhile b do S , si) s if B[[b℄℄s = �Show that the modi�ed semanti funtion, S 0sos, satis�esSsos[[S ℄℄ = S 0sos[[S ℄℄ for all statements S of WhileInvestigate whether or not this ompliates the proofs of (analogues of) Exerises3.26 and 3.27. 2

84 3 Provably Corret Implementation

Chapter 4Denotational SemantisIn the operational approah we were interested in how a program is exeuted.This is ontrary to the denotational approah where we are merely interested inthe e�et of exeuting a program. By e�et we here mean an assoiation betweeninitial states and �nal states. The idea then is to de�ne a semanti funtion foreah syntati ategory. It maps eah syntati onstrut to a mathematial objet,often a funtion, that desribes the e�et of exeuting that onstrut.The hallmark of denotational semantis is that semanti funtions are de�nedompositionally, that is� there is a semanti lause for eah of the basis elements of the syntatiategory, and� for eah method of onstruting a omposite element (in the syntati ate-gory) there is a semanti lause de�ned in terms of the semanti funtionapplied to the immediate onstituents of the omposite element.The funtions A and B de�ned in Chapter 1 are examples of denotational de�ni-tions: the mathematial objets assoiated with arithmeti expressions are fun-tions in State ! Z and those assoiated with boolean expressions are funtions inState ! T. The funtions Sns and Ssos assoiate mathematial objets with eahstatement, namely partial funtions in State ,! State. However, they are notexamples of denotational de�nitions beause they are not de�ned ompositionally.4.1 Diret style semantis: spei�ationThe e�et of exeuting a statement S is to hange the state so we shall de�ne themeaning of S to be a partial funtion on states:Sds: Stm ! (State ,! State) 85

86 4 Denotational SemantisSds[[x := a℄℄s = s[x 7!A[[a℄℄s℄Sds[[skip℄℄ = idSds[[S 1 ; S 2℄℄ = Sds[[S 2℄℄ Æ Sds[[S 1℄℄Sds[[if b then S 1 else S 2℄℄ = ond(B[[b℄℄, Sds[[S 1℄℄, Sds[[S 2℄℄)Sds[[while b do S ℄℄ = FIX Fwhere F g = ond(B[[b℄℄, g Æ Sds[[S ℄℄, id)Table 4.1: Denotational semantis for WhileThis is also the funtionality of Sns and Ssos and the need for partiality is againdemonstrated by the statement while true do skip. The de�nition is summarizedin Table 4.1 and we explain it in detail below; in partiular, we shall de�ne theauxiliary funtions `ond' and FIX.For assignment the lauseSds[[x := a℄℄s = s[x 7!A[[a℄℄s℄ensures that if Sds[[x := a℄℄s = s 0 then s 0 x = A[[a℄℄s and s 0 y = s y for y 6=x . Thelause for skip expresses that no state hange takes plae: the funtion id is theidentity funtion on State so Sds[[skip℄℄s = s.For sequening the lause isSds[[S 1 ; S 2℄℄ = Sds[[S 2℄℄ Æ Sds[[S 1℄℄So the e�et of exeuting S 1 ; S 2 is the funtional omposition of the e�et ofexeuting S 1 and that of exeuting S 2. Funtional omposition is de�ned suh thatif one of the funtions is unde�ned on a given argument then their omposition isunde�ned as well. Given a state s, we therefore haveSds[[S 1 ; S 2℄℄s= (Sds[[S 2℄℄ Æ Sds[[S 1℄℄)s= 8>>>>>>>>>><>>>>>>>>>>:
s 00 if there exists s 0 suh that Sds[[S 1℄℄s = s 0and Sds[[S 2℄℄s 0 = s 00undef if Sds[[S 1℄℄s = undefor if there exists s 0 suh that Sds[[S 1℄℄s = s 0but Sds[[S 2℄℄s 0 = undefIt follows that the sequening onstrut will only give a de�ned result if bothomponents do.For onditional the lause is

4.1 Diret style semantis: spei�ation 87Sds[[if b then S 1 else S 2℄℄ = ond(B[[b℄℄, Sds[[S 1℄℄, Sds[[S 2℄℄)and the auxiliary funtion `ond' has funtionalityond: (State ! T) � (State ,! State) � (State ,! State)! (State ,! State)and is de�ned byond(p, g1, g2) s = 8<: g1 s if p s = ttg2 s if p s = �The �rst parameter to `ond' is a funtion that, when supplied with an argument,will selet either the seond or the third parameter of `ond' and then supply thatparameter with the same argument. Thus we haveSds[[if b then S 1 else S 2℄℄ s= ond(B[[b℄℄, Sds[[S 1℄℄, Sds[[S 2℄℄) s= 8>>>>>><>>>>>>: s 0 if B[[b℄℄s = tt and Sds[[S 1℄℄s = s 0or if B[[b℄℄s = � and Sds[[S 2℄℄s = s 0undef if B[[b℄℄s = tt and Sds[[S 1℄℄s = undefor if B[[b℄℄s = � and Sds[[S 2℄℄s = undefSo if the seleted branh gives a de�ned result then so does the onditional. Notethat sine B[[b℄℄ is a total funtion, B[[b℄℄s annot be undef.De�ning the e�et of while b do S is a major task. To motivate the atualde�nition we �rst observe that the e�et of while b do S must equal that ofif b then (S ; while b do S) else skipUsing the parts of Sds that have already been de�ned, this givesSds[[while b do S ℄℄ = ond(B[[b℄℄, Sds[[while b do S ℄℄ Æ Sds[[S ℄℄, id) (*)Note that we annot use (*) as the de�nition of Sds[[while b do S ℄℄ beause thenSds would not be a ompositional de�nition. However, (*) expresses thatSds[[while b do S ℄℄ must be a �xed point of the funtional F de�ned byF g = ond(B[[b℄℄, g Æ Sds[[S ℄℄, id)that is Sds[[while b do S ℄℄ = F (Sds[[while b do S ℄℄). In this way we will get aompositional de�nition of Sds beause when de�ning F we only apply Sds to theimmediate onstituents of while b do S and not to the onstrut itself. Thus wewrite

88 4 Denotational SemantisSds[[while b do S ℄℄ = FIX Fwhere F g = ond(B[[b℄℄, g Æ Sds[[S ℄℄, id)to indiate that Sds[[while b do S ℄℄ is a �xed point of F . The funtionality of theauxiliary funtion FIX isFIX: ((State ,! State) ! (State ,! State)) ! (State ,! State)Example 4.1 Consider the statementwhile :(x = 0) do skipIt is easy to verify that the orresponding funtional F 0 is de�ned by(F 0 g) s = 8<: g s if s x 6= 0s if s x = 0The funtion g1 de�ned byg1 s = 8<: undef if s x 6= 0s if s x = 0is a �xed point of F 0 beause(F 0 g1) s = 8<: g1 s if s x 6= 0s if s x = 0= 8<: undef if s x 6= 0s if s x = 0= g1 sNext we laim that the funtion g2 de�ned byg2 s = undef for all sannot be a �xed point for F 0. The reason is that if s 0 is a state with s 0 x = 0then (F 0 g2) s 0 = s 0 whereas g2 s 0 = undef. 2Unfortunately, this does not suÆe for de�ning Sds[[while b do S ℄℄. We faetwo problems:� there are funtionals that have more than one �xed point, and� there are funtionals that have no �xed point at all.

4.1 Diret style semantis: spei�ation 89The funtional F 0 of Example 4.1 has more than one �xed point. In fat, everyfuntion g 0 of State ,! State satisfying g 0 s = s if s x = 0 will be a �xed pointof F 0.To give an example of a funtional that has no �xed points onsider F 1 de�nedby F 1 g = 8<: g1 if g = g2g2 otherwiseIf g1 6=g2 then learly there will be no funtion g0 suh that F 1 g0 = g0. Thus F 1has no �xed points at all.Exerise 4.2 Determine the funtional F assoiated with the statementwhile :(x=0) do x := x�1using the semanti equations of Table 4.1. Consider the following partial funtionsof State ,! State:g1 s = undef for all sg2 s = 8<: s[x7!0℄ if s x � 0undef if s x < 0g3 s = 8<: s[x7!0℄ if s x � 0s if s x < 0g4 s = s[x7!0℄ for all sg5 s = s for all sDetermine whih of these funtions are �xed points of F . 2Exerise 4.3 Consider the following fragment of the fatorial statementwhile :(x=1) do (y := y?x; x := x�1)Determine the funtional F assoiated with this statement. Determine at leasttwo di�erent �xed points for F . 2Requirements on the �xed pointOur solution to the two problems listed above will be to develop a frameworkwhere� we impose requirements on the �xed points and show that there is at mostone �xed point ful�lling these requirements, and

90 4 Denotational Semantis� all funtionals originating from statements in While do have a �xed pointthat satis�es these requirements.To motivate our hoie of requirements let us onsider the exeution of a state-ment while b do S from a state s0. There are three possible outomes:A: it terminates,B: it loops loally , that is there is a onstrut in S that loops, orC: it loops globally , that is the outer while-onstrut loops.We shall now investigate what an be said about the funtional F and its �xedpoints in eah of the three ases.The ase A: In this ase the exeution of while b do S from s0 terminates. Thismeans that there are states s1, � � �, sn suh thatB[[b℄℄ s i = 8<: tt if i<n� if i=nand Sds[[S ℄℄ s i = s i+1 for i<nAn example of a statement and a state satisfying these onditions is the statementwhile 0�x do x := x�1and any state where x has a non-negative value.Let g0 be any �xed point of F , that is assume that F g0 = g0. In the asewhere i<n we alulateg0 s i = (F g0) s i= ond(B[[b℄℄, g0 Æ Sds[[S ℄℄, id) s i= g0 (Sds[[S ℄℄ s i)= g0 s i+1In the ase where i=n we getg0 sn = (F g0) sn= ond(B[[b℄℄, g0 Æ Sds[[S ℄℄, id) sn= id sn= snThus every �xed point g0 of F will satisfy

4.1 Diret style semantis: spei�ation 91g0 s0 = snso in this ase we do not obtain any additional requirements that will help us tohoose one of the �xed points as the preferred one.The ase B: In this ase the exeution of while b do S from s0 loops loally .This means that there are states s1, � � �, sn suh thatB[[b℄℄s i = tt for i�nand Sds[[S ℄℄s i = 8<: s i+1 for i<nundef for i=nAn example of a statement and a state satisfying these onditions is the statementwhile 0�x do (if x=0 then (while true do skip)else x := x�1)and any state where x has a non-negative value.Let g0 be any �xed point of F , that is F g0 = g0. In the ase where i<n weobtaing0 s i = g0 s i+1just as in the previous ase. However, in the ase where i=n we getg0 sn = (F g0) sn= ond(B[[b℄℄, g0 Æ Sds[[S ℄℄, id) sn= (g0 Æ Sds[[S ℄℄) sn= undefThus any �xed point g0 of F will satisfyg0 s0 = undefso, again, in this ase we do not obtain any additional requirements that will helpus to hoose one of the �xed points as the preferred one.The ase C: The potential di�erene between �xed points omes to light when weonsider the possibility that the exeution of while b do S from s0 loops globally .This means that there are in�nitely many states s1, � � � suh thatB[[b℄℄s i = tt for all iand

92 4 Denotational SemantisSds[[S ℄℄s i = s i+1 for all i.An example of a statement and a state satisfying these onditions is the statementwhile :(x=0) do skipand any state where x is not equal to 0.Let g0 be any �xed point of F , that is F g0 = g0. As in the previous ases weget g0 s i = g0 s i+1for all i�0. Thus we haveg0 s0 = g0 s i for all iand we annot determine the value of g0 s0 in this way. This is the situation inwhih the various �xed points of F may di�er.This is not surprising beause the statement while :(x=0) do skip of Example4.1 has the funtional F 0 given by(F 0 g) s = 8<: g s if s x 6= 0s if s x = 0and any partial funtion g of State ,! State satisfying g s = s if s x = 0 willindeed be a �xed point of F 0. However, our omputational experiene tells us thatwe wantSds[[while :(x=0) do skip℄℄s0 = 8<: undef if s0 x 6= 0s0 if s0 x = 0in order to reord the looping. Thus our preferred �xed point of F 0 is the funtiong0 de�ned byg0 s = 8<: undef if s x 6= 0s if s x = 0The property that distinguishes g0 from some other �xed point g 0 of F 0 is thatwhenever g0 s = s 0 then we also have g 0 s = s 0 but not vie versa.Generalizing this experiene leads to the following requirement: the desired�xed point FIX F should be some partial funtion g0: State ,! State suh that� g0 is a �xed point of F , that is F g0 = g0, and� if g is another �xed point of F , that is F g = g , theng0 s = s 0 implies g s = s 0

4.2 Fixed point theory 93for all hoies of s and s 0.Note that if g0 s = undef then there are no requirements on g s.Exerise 4.4 Determine whih of the �xed points onsidered in Exerise 4.2 isthe desired �xed point, if any. 2Exerise 4.5 Determine the desired �xed point of the funtional onstruted inExerise 4.3. 24.2 Fixed point theoryTo prepare for a framework that guarantees the existene of the desired �xed pointFIX F we shall reformulate the requirements to FIX F in a slightly more formalway. The �rst step will be to formalize the requirement that FIX F shares itsresults with all other �xed points. To do so we de�ne an ordering v on partialfuntions of State ,! State. We setg1 v g2when the partial funtion g1: State ,! State shares its results with the partialfuntion g2: State ,! State in the sense thatif g1 s = s 0 then g2 s = s 0for all hoies of s and s 0.Example 4.6 Let g1, g2, g3 and g4 be partial funtions in State ,! State de�nedas follows:g1 s = s for all sg2 s = 8<: s if s x � 0undef otherwiseg3 s = 8<: s if s x = 0undef otherwiseg4 s = 8<: s if s x � 0undef otherwiseThen we have

94 4 Denotational Semantisg1 v g1,g2 v g1, g2 v g2,g3 v g1, g3 v g2, g3 v g3, g3 v g4, andg4 v g1, g4 v g4.It is neither the ase that g2 v g4 nor that g4 v g2. Pitorially, the ordering maybe expressed as follows1: � g1� g2 � g4� g3QQQQ �������� QQQQ
The idea is that the smaller elements are at the bottom of the piture and that thelines indiate the order between the elements. However, we shall not draw lineswhen there already is a \broken line", so the fat that g3 v g1 is left impliit inthe piture. 2Exerise 4.7 Let g1, g2 and g3 be de�ned as follows:g1 s = 8<: s if s x is evenundef otherwiseg2 s = 8<: s if s x is a primeundef otherwiseg3 s = sFirst, determine the ordering among these partial funtions. Next, determine apartial funtion g4 suh that g4 v g1, g4 v g2 and g4 v g3. Finally, determine apartial funtion g5 suh that g1 v g5, g2 v g5 and g5 v g3 but g5 is neither equalto g1, g2 nor g3. 2Exerise 4.8 (Essential) An alternative haraterization of the ordering v onState ,! State isg1 v g2 if and only if graph(g1) � graph(g2) (*)where graph(g) is the graph of the partial funtion g as de�ned in Appendix A.Prove that (*) is indeed orret. 21Suh a diagram is sometimes alled a Hasse diagram.

4.2 Fixed point theory 95The set State ,! State equipped with the ordering v is an example of apartially ordered set as we shall see in Lemma 4.13 below. In general, a partiallyordered set is a pair (D , vD) where D is a set and vD is a relation on D satisfyingd vD d (reexivity)d1 vD d2 and d2 vD d3 imply d1 vD d3 (transitivity)d1 vD d2 and d2 vD d1 imply d1 = d2 (anti-symmetry)The relation vD is said to be a partial order on D and we shall often omit thesubsript D of vD and write v. Oasionally, we may write d1 w d2 instead ofd2 v d1 and we shall say that d2 shares its information with d1. An element d ofD satisfyingd v d 0 for all d 0 of Dis alled a least element of D and we shall say that it ontains no information.Fat 4.9 If a partially ordered set (D , v) has a least element d then d is unique.Proof: Assume that D has two least elements d1 and d2. Sine d1 is a leastelement we have d1 v d2. Sine d2 is a least element we also have d2 v d1. Theanti-symmetry of the ordering v then gives that d1 = d2. 2This fat permits us to talk about the least element of D , if one exists, and weshall denote it by ?D or simply ? (pronouned \bottom").Example 4.10 Let S be a non-empty set and de�neP(S) = f K j K � S gThen (P(S), �) is a partially ordered set beause� � is reexive: K � K� � is transitive: if K 1 � K 2 and K 2 � K 3 then K 1 � K 3� � is anti-symmetri: if K 1 � K 2 and K 2 � K 1 then K 1 = K 2In the ase where S = fa,b,g the ordering an be depited as follows:

96 4 Denotational Semantis� fa,b,g� fa,bg � fa,g � fb,g� fag � fbg � fg� ;HHHHHHHH ����������������HHHHHHHH ��������HHHHHHHH�������� HHHHHHHH
Also, (P(S), �) has a least element, namely ;. 2Exerise 4.11 Show that (P(S), �) is a partially ordered set and determine theleast element. Draw a piture of the ordering when S = fa,b,g. 2Exerise 4.12 Let S be a non-empty set and de�neP�n(S) = f K j K is �nite and K � S gVerify that (P�n(S), �) and (P�n(S), �) are partially ordered sets. Do bothpartially ordered sets have a least element for all hoies of S? 2Lemma 4.13 (State ,! State, v) is a partially ordered set. The partial funtion?: State ,! State de�ned by? s = undef for all sis the least element of State ,! State.Proof: We shall �rst prove that v ful�ls the three requirements to a partial order:Clearly, g v g holds beause g s = s 0 trivially implies that g s = s 0 so v is areexive ordering.To see that it is a transitive ordering assume that g1 v g2 and g2 v g3 and weshall prove that g1 v g3. Assume that g1 s = s 0. From g1 v g2 we get g2 s = s 0and then g2 v g3 gives that g3 s = s 0.To see that it is an anti-symmetri ordering assume that g1 v g2 and g2 v g1and we shall then prove that g1 = g2. Assume that g1 s = s 0. Then g2 s = s 0follows from g1 v g2 so g1 and g2 are equal on s. If g1 s = undef then it must bethe ase that g2 s = undef sine otherwise g2 s = s 0 and the assumption g2 v g1then gives g1 s = s 0 whih is a ontradition. Thus g1 and g2 will be equal on s.

4.2 Fixed point theory 97Finally, we shall prove that ? is the least element of State ,! State. It iseasy to see that ? is indeed an element of State ,! State and it is also obviousthat ? v g holds for all g sine ? s = s 0 vauously implies that g s = s 0. 2Having introdued an ordering on the partial funtions we an now give a morepreise statement of the requirements to FIX F :� FIX F is a �xed point of F , that is F (FIX F) = FIX F , and� FIX F is a least �xed point of F , that isif F g = g then FIX F v g .Exerise 4.14 By analogy with Fat 4.9 show that if F has a least �xed point g0then g0 is unique. 2The next task will be to ensure that all funtionals F that may arise do indeedhave least �xed points. We shall do so by developing a general theory that givesmore struture to the partially ordered sets and that imposes restritions on thefuntionals so that they have least �xed points.Exerise 4.15 Determine the least �xed points of the funtionals onsidered inExerises 4.2 and 4.3. Compare with Exerises 4.4 and 4.5. 2Complete partially ordered setsConsider a partially ordered set (D , v) and assume that we have a subset Y ofD . We shall be interested in an element of D that summarizes all the informationof Y and this is alled an upper bound of Y ; formally, it is an element d of D suhthat 8d 0 2 Y . d 0 v dAn upper bound d of Y is a least upper bound if and only ifd 0 is an upper bound of Y implies that d v d 0Thus a least upper bound of Y will add as little extra information as possible tothat already present in the elements of Y .Exerise 4.16 By analogy with Fat 4.9 show that if Y has a least upper boundd then d is unique. 2If Y has a (neessarily unique) least upper bound we shall denote it by FY .Finally, a subset Y is alled a hain if it is onsistent in the sense that if we takeany two elements of Y then one will share its information with the other; formally,this is expressed by

98 4 Denotational Semantis8d1, d2 2 Y . d1 v d2 or d2 v d1Example 4.17 Consider the partially ordered set (P(fa,b,g), �) of Example4.10. Then the subsetY 0 = f ;, fag, fa,g gis a hain. Both fa,b,g and fa,g are upper bounds of Y 0 and fa,g is the leastupper bound. The element fa,bg is not an upper bound beause fa,g 6� fa,bg.In general, the least upper bound of a non-empty hain in P(fa,b,g) will be thelargest element of the hain.The subset f ;, fag, fg, fa,g g is not a hain beause fag and fg areunrelated by the ordering. However, it does have a least upper bound, namelyfa,g.The subset ; of P(fa,b,g) is a hain and it has any element of P(fa,b,g) asan upper bound. Its least upper bound is the element ;. 2Exerise 4.18 Let S be a non-empty set and onsider the partially ordered set(P(S), �). Show that every subset of P(S) has a least upper bound. Repeat theexerise for the partially ordered set (P(S), �). 2Exerise 4.19 Let S be a non-empty set and onsider the partially ordered set(P�n(S), �) as de�ned in Exerise 4.12. Show by means of an example that thereare hoies of S suh that (P�n(S), �) has a hain with no upper bound andtherefore no least upper bound. 2Example 4.20 Let gn: State ,! State be de�ned bygn s = 8>>><>>>: undef if s x > ns[x7!�1℄ if 0 � s x and s x � ns if s x < 0It is straightforward to verify that gn v gm whenever n � m beause gn will beunde�ned for more states than gm. Now de�ne Y 0 to beY 0 = f gn j n � 0 gThen Y 0 is a hain beause gn v gm whenever n � m. The partial funtiong s = 8<: s[x7!�1℄ if 0 � s xs if s x < 0is the least upper bound of Y . 2

4.2 Fixed point theory 99Exerise 4.21 Construt a subset Y of State ,! State suh that Y has noupper bound and hene no least upper bound. 2Exerise 4.22 Let gn be the partial funtion de�ned bygn s = 8<: s[y7!(s x)!℄[x7!1℄ if 0 < s x and s x � nundef if s x � 0 or s x > n(where m! denotes the fatorial of m.) De�ne Y 0 = f gn j n � 0 g and show thatit is a hain. Charaterize the upper bounds of Y 0 and determine the least upperbound. 2A partially ordered set (D , v) is alled a hain omplete partially ordered set(abbreviated po) whenever FY exists for all hains Y . It is a omplete lattieif FY exists for all subsets Y of D .Example 4.23 Exerise 4.18 shows that (P(S), �) and (P(S), �) are ompletelatties, and hene po's, for all non-empty sets S . Exerise 4.19 shows that(P�n(S), �) need not be a omplete lattie nor a po. 2Fat 4.24 If (D , v) is a po then it has a least element ? given by ?= F;.Proof: It is straightforward to hek that ; is a hain and sine (D , v) is a powe get that F; exists. Using the de�nition of F; we see that for any element d ofD we have F; v d . This means that F; is the least element of D . 2Exerise 4.21 shows that State ,! State is not a omplete lattie. Fortunately,we haveLemma 4.25 (State ,! State, v) is a po. The least upper bound FY of ahain Y is given bygraph(FY) = Sf graph(g) j g 2Y gthat is (FY)s = s 0 if and only if g s = s 0 for some g 2 Y .Proof: The proof is in three stages: First we prove thatSf graph(g) j g 2 Y g (*)is indeed a graph of a partial funtion in State ,! State. Seondly, we provethat this funtion will be an upper bound of Y and thirdly that it is less than anyother upper bound of Y , that is it is the least upper bound of Y .To verify that (*) spei�es a partial funtion we only need to show that if hs, s 0iand hs, s 00i are elements of

100 4 Denotational SemantisX = Sf graph(g) j g2Y gthen s 0 = s 00. When hs, s 0i 2 X there will be a partial funtion g 2 Y suh thatg s = s 0. Similarly, when hs, s 00i 2 X then there will be a partial funtion g 0 2 Ysuh that g 0 s = s 00. Sine Y is a hain we will have that either g v g 0 or g 0 v g .In any ase we get g s = g 0 s and this means that s 0 = s 00 as required. Thisompletes the �rst part of the proof.In the seond part of the proof we de�ne the partial funtion g0 bygraph(g0) = Sf graph(g) j g 2 Y gTo show that g0 is an upper bound of Y let g be an element of Y . Then we havegraph(g) � graph(g0) and using the result of Exerise 4.8 we see that g v g0 asrequired and we have ompleted the seond part of the proof.In the third part of the proof we show that g0 is the least upper bound of Y . Solet g1 be some upper bound of Y . Using the de�nition of an upper bound we getthat g v g1 must hold for all g 2Y . Exerise 4.8 gives that graph(g) � graph(g1).Hene it must be the ase thatSf graph(g) j g 2 Y g � graph(g1)But this is the same as graph(g0) � graph(g1) and Exerise 4.8 gives that g0 v g1.This shows that g0 is the least upper bound of Y and thereby we have ompletedthe proof. 2Continuous funtionsLet (D , v) and (D 0, v0) be po's and onsider a (total) funtion f : D ! D 0. Ifd1 v d2 then the intuition is that d1 shares its information with d2. So when thefuntion f has been applied to the two elements d1 and d2 then we shall expetthat a similar relationship holds between the results. That is we shall expet thatf d1 v0 f d2 and when this is the ase we say that f is monotone. Formally, f ismonotone if and only ifd1 v d2 implies f d1 v0 f d2for all hoies of d1 and d2.Example 4.26 Consider the po's (P(fa,b,g), �) and (P(fd,eg), �). The fun-tion f 1: P(fa,b,g) ! P(fd,eg) de�ned by the tableX fa,b,g fa,bg fa,g fb,g fag fbg fg ;f 1 X fd,eg fdg fd,eg fd,eg fdg fdg feg ;

4.2 Fixed point theory 101is monotone: it simply hanges a's and b's to d's and 's to e's.The funtion f 2: P(fa,b,g) ! P(fd,eg) de�ned by the tableX fa,b,g fa,bg fa,g fb,g fag fbg fg ;f 2 X fdg fdg fdg feg fdg feg feg fegis not monotone beause fb,g � fa,b,g but f 2 fb,g 6� f 2 fa,b,g. Intuitively,all sets that ontain an a are mapped to fdg whereas the others are mapped tofeg and sine the elements fdg and feg are inomparable this does not give amonotone funtion. However, if we hange the de�nition suh that sets with an aare mapped to fdg and all other sets to ; then the funtion will be monotone. 2Exerise 4.27 Consider the po (P(N), �). Determine whih of the followingfuntions in P(N) ! P(N) are monotone:� f 1 X = N n X� f 2 X = X [f27g� f 3 X = X \ f7, 9, 13g� f 4 X = f n 2 X j n is a prime g� f 5 X = f 2 ? n j n 2 X g 2Exerise 4.28 Determine whih of the following funtionals of(State ,! State) ! (State ,! State)are monotone:� F 0 g = g� F 1 g = 8<: g1 if g = g2g2 otherwise where g1 6= g2� (F 0 g) s = 8<: g s if s x 6= 0s if s x = 0 2The monotone funtions have a ouple of interesting properties. First we provethat the omposition of two monotone funtions is a monotone funtion.

102 4 Denotational Semantis
Fat 4.29 Let (D , v), (D 0, v0) and (D 00, v00) be po's and let f : D ! D 0and f 0: D 0 ! D 00 be monotone funtions. Then f 0 Æ f : D ! D 00 is a monotonefuntion.Proof: Assume that d1 v d2. The monotoniity of f gives that f d1 v0 f d2. Themonotoniity of f 0 then gives f 0 (f d1) v00 f 0 (f d2) as required. 2Next we prove that the image of a hain under a monotone funtion is itself ahain.Lemma 4.30 Let (D ,v) and (D 0, v0) be po's and let f : D ! D 0 be a monotonefuntion. If Y is a hain in D then f f d j d 2 Y g is a hain in D 0. Furthermore,F0f f d j d 2 Y g v0 f (FY)Proof: If Y = ; then the result holds immediately sine ?0 v0 f ?. So assumethat Y 6= ;. We shall �rst prove that f f d j d 2 Y g is a hain in D 0. So let d 01and d 02 be two elements of f f d j d 2 Y g. Then there are elements d1 and d2in Y suh that d 01 = f d1 and d 02 = f d2. Sine Y is a hain we have that eitherd1 v d2 or d2 v d1. In either ase we get that the same order holds between d 01and d 02 beause of the monotoniity of f . This proves that f f d j d 2 Y g is ahain.To prove the seond part of the lemma onsider an arbitrary element d ofY . Then it will be the ase that d v FY . The monotoniity of f gives thatf d v0 f (FY). Sine this holds for all d 2 Y we get that f (FY) is an upperbound on f f d j d 2Y g, that is F0 f f d j d 2Y g v0 f (FY). 2In general we annot expet that a monotone funtion preserves least upperbounds on hains, that is F0 f f d j d 2Y g = f (FY). This is illustrated by thefollowing example:Example 4.31 From Example 4.23 we get that (P(N [fag), �) is a po. Nowonsider the funtion f : P(N [fag) ! P(N [fag) de�ned byf X = 8<: X if X is �niteX [fag if X is in�niteClearly, f is a monotone funtion: if X 1 � X 2 then also f X 1 � f X 2. However,f does not preserve the least upper bounds of hains. To see this onsider the setY = f f0,1,� � �,ng j n�0 g

4.2 Fixed point theory 103It onsists of the elements f0g, f0,1g, f0,1,2g, � � � and it is straightforward to verifythat it is a hain with N as its least upper bound, that is FY = N. When weapply f to the elements of Y we getF f f X j X 2 Y g = FY = NHowever, we also havef (FY) = f N = N [fagshowing that f does not preserve the least upper bounds of hains. 2We shall be interested in funtions that preserve least upper bounds of hains,that is funtions f that satisfyF0f f d j d 2Y g = f (FY)Intuitively, this means that we obtain the same information independently ofwhether we determine the least upper bound before or after applying the fun-tion f .We shall say that a funtion f : D ! D 0 de�ned on po's (D , v) and (D 0, v0)is ontinuous if it is monotone andF0f f d j d 2Y g = f (FY)holds for all non-empty hains Y . If Ff f d j d 2 Y g = f (FY) holds for theempty hain, that is ? = f ?, then we shall say that f is strit.Example 4.32 The funtion f 1 of Example 4.26 is also ontinuous. To see thisonsider a non-empty hain Y of P(fa,b,g). The least upper bound of Y will bethe largest element, say X 0, of Y (see Example 4.17). Therefore we havef 1 (FY) = f 1 X 0 beause X 0 = FY� Ff f 1 X j X 2 Y g beause X 0 2 YUsing that f 1 is monotone we get from Lemma 4.30 that Ff f 1 X j X 2 Y g� f 1 (FY). It follows that f 1 is ontinuous. Also, f 1 is a strit funtion beausef 1 ; = ;.The funtion f of Example 4.31 is not a ontinuous funtion beause there isa hain for whih it does not preserve the least upper bound. 2Exerise 4.33 Show that the funtional F 0 of Example 4.1 is ontinuous. 2Exerise 4.34 Assume that (D , v) and (D 0, v0) are po's and that f : D ! D 0satis�es

104 4 Denotational SemantisF0f f d j d 2Y g = f (FY)for all non-empty hains Y of D . Show that f is monotone. 2We an extend the result of Lemma 4.29 to show that the omposition of twoontinuous funtions will also be ontinuous:Lemma 4.35 Let (D , v), (D 0, v0) and (D 00, v00) be po's and let f : D ! D 0and f 0: D 0 ! D 00 be ontinuous funtions. Then f 0 Æ f : D ! D 00 is a ontinuousfuntion.Proof: From Lemma 4.29 we get that f 0 Æ f is monotone. To prove that it isontinuous let Y be a non-empty hain in D . The ontinuity of f givesF0f f d j d 2 Y g = f (FY)Sine f f d j d 2 Y g is a (non-empty) hain in D 0 we an use the ontinuity off 0 and getF00f f 0 d 0 j d 0 2 f f d j d 2 Y g g = f 0 (F0f f d j d 2 Y g)whih is equivalent toF00f f 0 (f d) j d 2 Y g = f 0 (f (FY))This proves the result. 2Exerise 4.36 Prove that if f and f 0 are strit funtions then so is f 0 Æ f . 2We an now de�ne the required �xed point operator FIX:Theorem 4.37 Let f : D ! D be a ontinuous funtion on the po (D , v) withleast element ?. ThenFIX f = Ff f n ? j n�0 gde�nes an element of D and this element is the least �xed point of f .Here we have used thatf 0 = id, andf n+1 = f Æ f n for n�0

4.2 Fixed point theory 105Proof: We �rst show the well-de�nedness of FIX f . Note that f 0 ? = ? and that? v d for all d 2 D . By indution on n one may show thatf n ? v f n dfor all d 2 D sine f is monotone. It follows that f n ? v f m ? whenever n�m.Hene f f n ? j n�0 g is a (non-empty) hain in D and FIX f exists beause D isa po.We next show that FIX f is a �xed point, that is f (FIX f) = FIX f . Wealulate:f (FIX f) = f (Ff f n ? j n�0 g) (de�nition of FIX f)= Ff f (f n ?) j n�0 g (ontinuity of f)= Ff f n ? j n�1 g= F(f f n ? j n�1 g [f?g) (F(Y [f?g) = FYfor all hains Y)= Ff f n ? j n�0 g (f 0 ? = ?)= FIX f (de�nition of FIX f)To see that FIX f is the least �xed point assume that d is some other �xedpoint. Clearly ? v d so the monotoniity of f gives f n ? v f n d for n�0 and as dwas a �xed point we obtain f n ? v d for all n�0. Hene d is an upper bound ofthe hain f f n ? j n�0 g and using that FIX f is the least upper bound we haveFIX f v d . 2Example 4.38 Consider the funtion F 0 of Example 4.1:(F 0 g) s = 8<: g s if s x 6= 0s if s x = 0We shall determine its least �xed point using the approah of Theorem 4.37. Theleast element ? of State ,! State is given by Lemma 4.13 and has ? s = undeffor all s. We then determine the elements of the set f F 0n ? j n�0 g as follows:(F 00 ?) s = (id ?) s (de�nition of F 00 ?)= undef (de�nition of id and ?)(F 01 ?) s = (F 0 ?) s (de�nition of F 01 ?)= 8<: ? s if s x 6= 0s if s x = 0 (de�nition of F 0 ?)= 8<: undef if s x 6= 0s if s x = 0 (de�nition of ?)

106 4 Denotational Semantis(F 02 ?) s = F 0 (F 01 ?) s (de�nition of F 02 ?)= 8<: (F 01 ?) s if s x 6= 0s if s x = 0 (de�nition of F 0)= 8<: undef if s x 6= 0s if s x = 0 (de�nition of F 01 ?)...In general we have F 0n ? = F 0n+1 ? for n > 0. ThereforeFf F 0n ? j n�0 g = F fF 00 ?, F 01 ?g = F 01 ?beause F 00 ? = ?. Thus the least �xed point of F 0 will be the funtiong1 s = 8<: undef if s x 6= 0s if s x = 0 2Exerise 4.39 Redo Exerise 4.15 using the approah of Theorem 4.37, that isdedue the general form of the iterands, F n ?, for the funtional, F , of Exerises4.2 and 4.3. 2Exerise 4.40 (Essential) Let f : D ! D be a ontinuous funtion on a po(D , v) and let d2D satisfy f d v d . Show that FIX f v d . 2The table below summarizes the development we have performed in order todemonstrate the existene of least �xed points:Fixed Point Theory1: We restrit ourselves to hain omplete partially ordered sets | po's.2: We restrit ourselves to ontinuous funtions on po's.3: We show that ontinuous funtions on po's always have least �xed points(Theorem 4.37).Exerise 4.41 * Let (D , v) be a po and de�ne (D!D ,v0) by settingf 1 v0 f 2 if and only if f 1 d v f 2 d for all d 2 DShow that (D!D ,v0) is a po and that FIX is \ontinuous" in the sense thatFIX (F0 F) = Ff FIX f j f 2 F gholds for all non-empty hains F � D!D of ontinuous funtions. 2

4.3 Diret style semantis: existene 107Exerise 4.42 ** (For mathematiians) Given a po (D , v) we de�ne an openset of D to be a subset Y of D satisfying(1) if d12Y and d1 v d2 then d22Y , and(2) if Y 0 is a non-empty hain satisfying FY 0 2 Y then there exists an elementd of Y 0 whih also is an element of Y .The set of open sets of D is denoted OD. Show that this is indeed a topology onD , that is show that� ; and D are members of OD, and� the intersetion of two open sets is an open set, and� the union of any olletion of open sets is an open set.Let (D , v) and (D 0, v0) be po's. A funtion f :D!D 0 is topologially-ontinuousif and only if the funtion f �1: P(D 0) ! P(D) de�ned byf �1(Y 0) = f d 2 D j f d 2 Y 0 gmaps open sets to open sets, that is speializes to f �1: OD0 !OD. Show that f is aontinuous funtion between D and D 0 if and only if it is a topologially-ontinuousfuntion between D and D 0. 24.3 Diret style semantis: existeneWe have now obtained the mathematial foundations needed to prove that thesemanti lauses of Table 4.1 do indeed de�ne a funtion. So onsider one againthe lauseSds[[while b do S ℄℄ = FIX Fwhere F g = ond(B[[b℄℄, g Æ Sds[[S ℄℄, id)For this to make sense we must show that F is ontinuous. To do so we �rstobserve thatF g = F 1 (F 2 g)whereF 1 g = ond(B[[b℄℄, g , id)F 2 g = g Æ Sds[[S ℄℄

108 4 Denotational SemantisUsing Lemma 4.35 we then obtain the ontinuity of F by showing that F 1 and F 2are ontinuous. We shall �rst prove that F 1 is ontinuous:Lemma 4.43 Let g0: State ,! State, p: State ! T and de�neF g = ond(p, g , g0)Then F is ontinuous.Proof: We shall �rst prove that F is monotone. So assume that g1 v g2 and weshall show that F g1 v F g2. It suÆes to onsider an arbitrary state s and showthat (F g1) s = s 0 implies (F g2) s = s 0If p s = tt then (F g1) s = g1 s and from g1 v g2 we get that g1 s = s 0 impliesg2 s = s 0. Sine (F g2) s = g2 s we have proved the result. So onsider the asewhere p s = �. Then (F g1) s = g0 s and similarly (F g2) s = g0 s and the resultis immediate.To prove that F is ontinuous let Y be a non-empty hain in State ,! State.We must show thatF (FY) v Ff F g j g2Y gsine F (FY) w Ff F g j g2Y g follows from the monotoniity of F (see Lemma4.30). Thus we have to show thatgraph(F (FY)) � Sf graph(F g) j g2Y gusing the haraterization of least upper bounds of hains in State ,! State givenin Lemma 4.25. So assume that (F (FY)) s = s 0 and let us determine g 2 Y suhthat (F g) s = s 0. If p s = � we have F (FY) s = g0 s = s 0 and learly, for everyelement g of the non-empty set Y we have (F g) s = g0 s = s 0. If p s = tt thenwe get (F (FY)) s = (FY) s = s 0 so hs, s 0i 2 graph(FY). Sinegraph(FY) = Sf graph(g) j g2Y g(aording to Lemma 4.25) we therefore have g2Y suh that g s = s 0 and it followsthat (F g) s = s 0. This proves the result. 2Exerise 4.44 (Essential) Prove that (in the setting of Lemma 4.43) F de�nedby F g = ond(p, g0, g) is ontinuous, that is `ond' is ontinuous in its seondand third arguments. 2

4.3 Diret style semantis: existene 109
Lemma 4.45 Let g0: State ,! State and de�neF g = g Æ g0Then F is ontinuous.Proof: We shall �rst prove that F is monotone. If g1 v g2 then graph(g1) �graph(g2) aording to Exerise 4.8 so thatgraph(g0) � graph(g1) � graph(g0) � graph(g2)and this shows that F g1 v F g2. Next we shall prove that F is ontinuous. If Yis a non-empty hain thengraph(F (FY)) = graph((FY) Æ g0)= graph(g0) � graph(FY)= graph(g0) � Sfgraph(g) j g2Y g= Sfgraph(g0) � graph(g) j g2Y g= graph(FfF g j g2Y g)where we have used Lemma 4.25 twie. Thus F (FY) = FfF g j g2Yg. 2Exerise 4.46 (Essential) Prove that (in the setting of Lemma 4.45) F de�nedby F g = g0 Æ g is ontinuous, that is Æ is ontinuous in both arguments. 2We have now established the results needed to show that the equations of Table4.1 de�ne a funtion Sds:Proposition 4.47 The semanti equations of Table 4.1 de�ne a total funtionSds in Stm ! (State ,! State).Proof: The proof is by strutural indution on the statement S .The ase x := a: Clearly the funtion that maps a state s to the state s[x 7!A[[a℄℄s℄is well-de�ned.The ase skip: Clearly the funtion id is well-de�ned.The ase S 1;S 2: The indution hypothesis gives that Sds[[S 1℄℄ and Sds[[S 2℄℄ arewell-de�ned and learly their omposition will be well-de�ned.The ase if b then S 1 else S 2: The indution hypothesis gives that Sds[[S 1℄℄

110 4 Denotational Semantisand Sds[[S 2℄℄ are well-de�ned funtions and learly this property is preserved bythe funtion `ond'.The ase while b do S : The indution hypothesis gives that Sds[[S ℄℄ is well-de�ned.The funtions F 1 and F 2 de�ned byF 1 g = ond(B[[b℄℄, g , id)F 2 g = g Æ Sds[[S ℄℄are ontinuous aording to Lemmas 4.43 and 4.45. Thus Lemma 4.35 gives thatF g = F 1 (F 2 g) is ontinuous. From Theorem 4.37 we then have that FIX F iswell-de�ned and thereby that Sds[[while b do S ℄℄ is well-de�ned. This ompletesthe proof. 2Example 4.48 Consider the denotational semantis of the fatorial statement:Sds[[y := 1; while :(x=1) do (y:=y?x; x:=x�1)℄℄We shall be interested in applying this funtion to a state s0 where x has the value3. To do that we shall �rst apply the lauses of Table 4.1 and we then get thatSds[[y := 1; while :(x=1) do (y:=y?x; x:=x�1)℄℄ s0= (FIX F) s0[y7!1℄whereF g s = 8<: g (Sds[[y:= y?x; x:=x�1℄℄ s) if B[[:(x=1)℄℄ s = tts if B[[:(x=1)℄℄ s = �or, equivalently,F g s = 8<: g (s[y7!(s y)?(s x)℄[x7!(s x)�1℄) if s x 6= 1s if s x = 1We an now alulate the various funtions F n ? used in the de�nition of FIX Fin Theorem 4.37:(F 0 ?) s = undef(F 1 ?) s = 8<: undef if s x 6= 1s if s x = 1(F 2 ?) s = 8>>><>>>: undef if s x 6= 1 and s x 6= 2s[y7!(s y)?2℄[x7!1℄ if s x = 2s if s x = 1

4.3 Diret style semantis: existene 111Thus if x is 1 or 2 then the F 2 ? will give the orret value for y and for all othervalues of x the result is unde�ned. This is a general pattern: the nth iterand F n ?will determine the orret value if it an be omputed with at most n unfoldingsof the while-loop (that is n evaluations of the boolean ondition). The generalformula is(F n ?) s = 8<: undef if s x < 1 or s x > ns[y7!(s y)?j � � �?2?1℄[x7!1℄ if s x = j and 1�j and j�nWe then have(FIX F) s = 8<: undef if s x < 1s[y7!(s y)?n� � �?2?1℄[x7!1℄ if s x = n and n�1So in the state s0 where x has the value 3 we get that the value omputed by thefatorial statement is(FIX F) (s0[y7!1℄) y = 1 ? 3 ? 2 ? 1 = 6as expeted. 2Exerise 4.49 Consider the statementz:=0; while y�x do (z:=z+1; x:=x�y)and perform a development analogous to that of Example 4.48. 2Exerise 4.50 Show that Sds[[while true do skip℄℄ is the totally unde�ned fun-tion ?. 2Exerise 4.51 Extend the language with the statement repeat S until b andgive the new (ompositional) lause for Sds. Validate the well-de�nedness of theextended version of Sds. 2Exerise 4.52 Extend the language with the statement for x := a1 to a2 do Sand give the new (ompositional) lause for Sds. Validate the well-de�nedness ofthe extended version of Sds. 2To summarize, the well-de�nedness of Sds relies on the following results estab-lished above:

112 4 Denotational SemantisProof Summary for While:Well-de�nedness of Denotational Semantis1: The set State ,! State equipped with an appropriate order v is a po(Lemmas 4.13 and 4.25).2: Certain funtions 	: (State ,! State) ! (State ,! State) are ontin-uous (Lemmas 4.43 and 4.45).3: In the de�nition of Sds we only apply the �xed point operation to ontin-uous funtions (Proposition 4.47).Properties of the semantisIn the operational semantis we de�ned a notion of two statements being seman-tially equivalent. A similar notion an be de�ned based on the denotationalsemantis: S 1 and S 2 are semantially equivalent if and only ifSds[[S 1℄℄ = Sds[[S 2℄℄Exerise 4.53 Show that the following statements of While are semantiallyequivalent in the above sense:� S ;skip and S� S 1;(S 2;S 3) and (S 1;S 2);S 3� while b do S and if b then (S ; while b do S) else skip 2Exerise 4.54 * Prove that repeat S until b and S ; while :b do S are seman-tially equivalent using the denotational approah. The semantis of the repeat-onstrut is given in Exerise 4.51. 24.4 An equivalene resultHaving produed yet another semantis of the language While we shall be inter-ested in its relation to the operational semantis and for this we shall fous on thestrutural operational semantis.Theorem 4.55 For every statement S of While we have Ssos[[S ℄℄ = Sds[[S ℄℄.

4.4 An equivalene result 113Both Sds[[S ℄℄ and Ssos[[S ℄℄ are funtions in State ,! State, that is they are elementsof a partially ordered set. To prove that two elements d1 and d2 of a partiallyordered set are equal it is suÆient to prove that d1 v d2 and that d2 v d1. Thusto prove Theorem 4.55 we shall show that� Ssos[[S ℄℄ v Sds[[S ℄℄, and� Sds[[S ℄℄ v Ssos[[S ℄℄.The �rst result is expressed by the following lemma:Lemma 4.56 For every statement S of While we have Ssos[[S ℄℄ v Sds[[S ℄℄.Proof: It is suÆient to prove that for all states s and s 0hS , si)� s 0 implies Sds[[S ℄℄s = s 0 (*)To do so we shall need to establish the following propertyhS , si) s 0 implies Sds[[S ℄℄s = s 0hS , si) hS 0, s 0i implies Sds[[S ℄℄s = Sds[[S 0℄℄s 0 (**)Assuming that (**) holds the proof of (*) is a straightforward indution on thelength k of the derivation sequene hS , si)k s 0 (see Setion 2.2).We now turn to the proof of (**) and for this we shall use indution on theshape of the derivation tree for hS , si) s 0 or hS , si) hS 0, s 0i.The ase [asssos℄: We havehx := a, si) s[x 7!A[[a℄℄s℄and sine Sds[[x := a℄℄s = s[x 7!A[[a℄℄s℄ the result follows.The ase [skipsos℄: Analogous.The ase [omp 1sos℄: Assume thathS 1;S 2, si) hS 01;S 2, s 0ibeause hS 1, si) hS 01, s 0i. Then the indution hypothesis applied to the lattertransition gives Sds[[S 1℄℄s = Sds[[S 01℄℄s 0 and we getSds[[S 1;S 2℄℄ s = Sds[[S 2℄℄(Sds[[S 1℄℄s)= Sds[[S 2℄℄(Sds[[S 01℄℄s 0)= Sds[[S 01;S 2℄℄s 0as required.The ase [omp 2sos℄: Assume that

114 4 Denotational SemantishS 1;S 2, si) hS 2, s 0ibeause hS 1, si) s 0. Then the indution hypothesis applied to that transitiongives Sds[[S 1℄℄s = s 0 and we getSds[[S 1;S 2℄℄s = Sds[[S 2℄℄(Sds[[S 1℄℄s) = Sds[[S 2℄℄s 0where the �rst equality omes from the de�nition of Sds and we just argued forthe seond equality. This proves the result.The ase [if ttsos℄: Assume thathif b then S 1 else S 2, si) hS 1, sibeause B[[b℄℄ s = tt. ThenSds[[if b then S 1 else S 2℄℄s = ond(B[[b℄℄, Sds[[S 1℄℄, Sds[[S 2℄℄)s = Sds[[S 1℄℄sas required.The ase [if�sos℄: Analogous.The ase [whilesos℄: Assume thathwhile b do S , si) hif b then (S ; while b do S) else skip, siFrom the de�nition of Sds we have Sds[[while b do S ℄℄ = FIX F where F g =ond(B[[b℄℄, g Æ Sds[[S ℄℄, id). We therefore getSds[[while b do S ℄℄= (FIX F)= F (FIX F)= ond(B[[b℄℄, Sds[[while b do S ℄℄ Æ Sds[[S ℄℄, id)= ond(B[[b℄℄, Sds[[S ; while b do S ℄℄, Sds[[skip℄℄)= Sds[[if b then (S ; while b do S) else skip℄℄as required. This ompletes the proof of (**). 2Note that (*) does not imply that Ssos[[S ℄℄ = Sds[[S ℄℄ as we have only provedthat if Ssos[[S ℄℄s 6= undef then Ssos[[S ℄℄s = Sds[[S ℄℄s. Still there is the possibility thatSds[[S ℄℄ may be de�ned for more arguments than Ssos[[S ℄℄. However this is ruled outby the following lemma:Lemma 4.57 For every statement S of While we have Sds[[S ℄℄ v Ssos[[S ℄℄.

4.4 An equivalene result 115Proof: We proeed by strutural indution on the statement S .The ase x := a: Clearly Sds[[x := a℄℄s = Ssos[[x := a℄℄s. Note that this meansthat Ssos satis�es the lause de�ning Sds in Table 4.1.The ase skip: Clearly Sds[[skip℄℄s = Ssos[[skip℄℄s.The ase S 1 ; S 2: Reall that Æ is monotone in both arguments (Lemma 4.45 andExerise 4.46). We then haveSds[[S 1 ; S 2℄℄ = Sds[[S 2℄℄ Æ Sds[[S 1℄℄v Ssos[[S 2℄℄ Æ Ssos[[S 1℄℄beause the indution hypothesis applied to S 1 and S 2 gives Sds[[S 1℄℄ v Ssos[[S 1℄℄and Sds[[S 2℄℄ v Ssos[[S 2℄℄. Furthermore, Exerise 2.21 gives that if hS 1, si)� s 0then hS 1 ; S 2, si)� hS 2, s 0i and heneSsos[[S 2℄℄ Æ Ssos[[S 1℄℄ v Ssos[[S 1 ; S 2℄℄and this proves the result. Note that in this ase Ssos ful�ls a weaker version ofthe lause de�ning Sds in Table 4.1.The ase if b then S 1 else S 2: Reall that `ond' is monotone in its seond andthird argument (Lemma 4.43 and Exerise 4.44). We then haveSds[[if b then S 1 else S 2℄℄ = ond(B[[b℄℄, Sds[[S 1℄℄, Sds[[S 2℄℄)v ond(B[[b℄℄, Ssos[[S 1℄℄, Ssos[[S 2℄℄)beause the indution hypothesis applied to S 1 and S 2 gives Sds[[S 1℄℄ v Ssos[[S 1℄℄and Sds[[S 2℄℄ v Ssos[[S 2℄℄. Furthermore, it follows from [if ttsos℄ and [if�sos℄ thatSsos[[if b then S 1 else S 2℄℄s = Ssos[[S 1℄℄s if B[[b℄℄s = ttSsos[[if b then S 1 else S 2℄℄s = Ssos[[S 2℄℄s if B[[b℄℄s = �so thatond(B[[b℄℄, Ssos[[S 1℄℄, Ssos[[S 2℄℄) = Ssos[[if b then S 1 else S 2℄℄and this proves the result. Note that in this ase Ssos ful�ls the lause de�ningSds in Table 4.1.The ase while b do S : We haveSds[[while b do S ℄℄ = FIX Fwhere F g = ond(B[[b℄℄, g Æ Sds[[S ℄℄, id) and we reall that F is ontinuous. It issuÆient to prove thatF (S sos[[while b do S ℄℄) v S sos[[while b do S ℄℄

116 4 Denotational Semantisbeause then Exerise 4.40 gives FIX F v S sos[[while b do S ℄℄ as required. FromExerise 2.21 we getSsos[[while b do S ℄℄ = ond(B[[b℄℄, Ssos[[S ; while b do S ℄℄, id)w ond(B[[b℄℄, Ssos[[while b do S ℄℄ Æ Ssos[[S ℄℄, id)The indution hypothesis applied to S gives Sds[[S ℄℄ v Ssos[[S ℄℄ so using the mono-toniity of Æ and `ond' we getSsos[[while b do S ℄℄ w ond(B[[b℄℄, Ssos[[while b do S ℄℄ Æ Ssos[[S ℄℄, id)w ond(B[[b℄℄, Ssos[[while b do S ℄℄ Æ Sds[[S ℄℄, id)= F (Ssos[[while b do S ℄℄)Note that in this ase Ssos also ful�ls a weaker version of the lause de�ning Sdsin Table 4.1. 2The key tehnique used in the proof an be summarized as follows:Proof Summary for While:Equivalene of Operational Semantis and Denotational Semantis1: Prove that Ssos[[S ℄℄v Sds[[S ℄℄ by �rst using indution on the shape of deriva-tion trees to show that� if a statement is exeuted one step in the strutural operationalsemantis and does not terminate then this does not hange themeaning in the denotational semantis, and� if a statement is exeuted one step in the strutural operationalsemantis and does terminate, then the same result is obtained inthe denotational semantis.and seondly by using indution on the length of derivation sequenes.2: Prove that Sds[[S ℄℄ v Ssos[[S ℄℄ by showing that� Ssos ful�ls slightly weaker versions of the lauses de�ning Sds in Table4.1, that is ifSds[[S ℄℄ = 	(� � � Sds[[S 0℄℄ � � �)then Ssos[[S ℄℄ w 	(� � � Ssos[[S 0℄℄ � � �)A proof by strutural indution then gives that Sds[[S ℄℄ v Ssos[[S ℄℄.

4.5 Extensions of While 117Exerise 4.58 Give a detailed argument showing thatSsos[[while b do S ℄℄ w ond(B[[b℄℄, Ssos[[while b do S ℄℄ Æ Ssos[[S ℄℄, id). 2Exerise 4.59 Extend the proof of Theorem 4.55 so that it applies to the languagewhen augmented with repeat S until b. 2Exerise 4.60 Extend the proof of Theorem 4.55 so that it applies to the languagewhen augmented with for x :=a1 to a2 do S . 2Exerise 4.61 Combining the results of Theorem 2.26 and Theorem 4.55 we getthat Sns[[S ℄℄ = Sds[[S ℄℄ holds for every statement S of While. Give a diret proofof this (that is without using the two theorems). 24.5 Extensions of WhileWe shall onlude this hapter by onsidering a ouple of extensions of the languageWhile. The extensions have been hosen so as to illustrate two of the mostimportant onepts of denotational semantis:� loations, and� ontinuations.In the �rst ase While is extended with bloks and proedures and in the seondase with exeptions. In both ases we shall show how to modify the semantis ofTable 4.1.The onept of loationsWe shall �rst extend While with bloks delaring loal variables and proedures.The new language is alled Pro and its syntax isS ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do S j begin DV DP S end j all pDV ::= var x := a; DV j "DP ::= pro p is S ; DP j "where DV and DP are meta-variables ranging over the syntati ategories DeVof variable delarations and DeP of proedure delarations, respetively, and p isa meta-variable ranging over the syntati ategory Pname of proedure names.The idea is that variables and proedures are only known inside the blok wherethey are delared. Proedures may or may not be reursive and we shall emphasizethe di�erenes in the semantis to be spei�ed below.We shall adopt stati sope rules rather than dynami sope rules. Considerthe following statement:

118 4 Denotational Semantisbegin var x := 7; pro p is x := 0;begin var x := 5; all p endendUsing stati sope rules the e�et of exeuting all p in the inner blok will beto modify the global variable x. Using dynami sope rules the e�et will be tomodify the loal variable x.To obtain stati sope rules we shall introdue the notion of loations: toeah variable we assoiate a unique loation and to eah loation we assoiate avalue. This is in ontrast to what we did in Table 4.1 where we employed a diretassoiation between variables and values. The idea then is that whenever a newvariable is delared it is assoiated with a new unused loation and that it is thevalue of this loation that is hanged by assignment to the variable. With respetto the above statement this means that the global variable x and the loal variablex will have di�erent loations. In the inner blok we an only diretly aess theloation of the loal variable but the proedure body for p may only aess theloation of the global variable.Stores and variable environmentsSo far states in State have been used to assoiate values with variables. We shallnow replae states with stores that map loations to values and with variableenvironments that map variables to loations. We introdue the domainLo = Zof loations whih for the sake of simpliity has been identi�ed with the integers.We shall need an operationnew: Lo ! Loon loations that given a loation will give the next one; sine Lo is Z we maytake `new' to be the suessor funtion on the integers.We an now de�ne a store, sto, as an element ofStore = Lo [fnextg ! Zwhere `next' is a speial token used to hold the next free loation. Note that sineLo is Z we have that `sto next' is a loation.A variable environment envV is an element ofEnvV = Var ! LoThus the variable environment will assign a loation to eah variable.So, rather than having a single mapping s from variables to values we havesplit it into two mappings envV and sto and the idea is that s = sto Æ envV . Thismotivates de�ning the funtion `lookup' by

4.5 Extensions of While 119S 0ds[[x :=a℄℄envV sto = sto[l 7!A[[a℄℄(lookup envV sto)℄where l = envV xS 0ds[[skip℄℄envV = idS 0ds[[S 1 ; S 2℄℄envV = (S 0ds[[S 2℄℄envV) Æ (S 0ds[[S 1℄℄envV)S 0ds[[if b then S 1 else S 2℄℄envV =ond(B[[b℄℄Æ(lookup envV), S 0ds[[S 1℄℄envV , S 0ds[[S 2℄℄envV)S 0ds[[while b do S ℄℄envV = FIX Fwhere F g = ond(B[[b℄℄Æ(lookup envV), g Æ (S 0ds[[S ℄℄envV), id)Table 4.2: Denotational semantis for While using loationslookup envV sto = sto Æ envVso that `lookup envV ' will transform a store to a state, that islookup: EnvV ! Store ! StateHaving replaed a one stage mapping with a two stage mapping we shall wantto reformulate the semanti equations of Table 4.1 to use variable environmentsand stores. The new semanti funtion S 0ds has funtionalityS 0ds: Stm ! EnvV ! (Store ,! Store)so that only the store is updated during the exeution of statements. The lausesde�ning S 0ds are given in Table 4.2. Note that in the lause for assignment thevariable environment is onsulted to determine the loation of the variable andthis loation is updated in the store. In the lauses for the onditional and thewhile-onstrut we use the auxiliary funtion `ond' of funtionalityond: (Store ! T) � (Store ,! Store) � (Store ,! Store)! (Store ,! Store)and its de�nition is as in Setion 4.1.Exerise 4.62 We have to make sure that the lauses of Table 4.2 de�ne a well-de�ned funtion S 0ds. To do so� equip Store ,! Store with a partial ordering suh that it beomes a po,� show that Æ is ontinuous in both of its arguments and that `ond' is ontin-uous in its seond and third argument, and

120 4 Denotational Semantis� show that the �xed point operation is only applied to ontinuous funtions.Conlude that S 0ds is a well-de�ned funtion. 2Exerise 4.63 * Prove that the two semanti funtions Sds and S 0ds satisfySds[[S ℄℄ Æ (lookup envV) = (lookup envV) Æ (S 0ds[[S ℄℄envV)for all statements S of While and for all envV suh that envV is an injetivemapping. 2Exerise 4.64 Having replaed a one stage mapping with a two stage mapping wemight onsider rede�ning the semanti funtions A and B. The new funtionalitiesof A and B might beA0: Aexp ! EnvV ! (Store ! Z)B0: Bexp ! EnvV ! (Store ! T)and the intended relationship is thatA0[[a℄℄envV = A[[a℄℄ Æ (lookup envV)B0[[b℄℄envV = B[[b℄℄ Æ (lookup envV)Give a ompositional de�nition of the funtions A0 and B0 suh that this is thease. 2Updating the variable environmentThe variable environment is updated whenever we enter a blok ontaining loaldelarations. To express this we shall introdue a semanti funtion DVds for thesyntati ategory of variable delarations. It has funtionalityDVds: DeV ! EnvV � Store ! EnvV � StoreThe funtion DVds[[DV ℄℄ will take a pair as arguments: the �rst omponent of thatpair will be the urrent variable environment and the seond omponent the urrentstore. The funtion will return the updated variable environment as well as theupdated store. The funtion is de�ned by the semanti lauses of Table 4.3. Notethat we proess the delarations from left to right and that we update the valueof the token `next' in the store.In the ase where there are no proedure delarations in a blok we an extendthe semanti funtion S 0ds of Table 4.2 with a lause likeS 0ds[[begin DV S end℄℄envV sto = S 0ds[[S ℄℄env 0V sto 0where DVds[[DV ℄℄(envV , sto) = (env 0V , sto 0)

4.5 Extensions of While 121DVds[[var x := a; DV ℄℄(envV , sto) =DVds[[DV ℄℄(envV [x 7!l ℄, sto[l 7!v ℄[next7!new l ℄)where l = sto next and v = A[[a℄℄(lookup envV sto)DVds[["℄℄ = idTable 4.3: Denotational semantis for variable delarationsThus we evaluate the body S in an updated variable environment and an updatedstore. We shall later modify the above lause to take the proedure delarationsinto aount.Exerise 4.65 Consider the following statement of Pro:begin var y := 0; var x := 1;begin var x := 7; x := x+1 end;y := xendUse the semanti equations to show that the loation for y is assigned the value 1in the �nal store. 2Proedure environmentsTo ater for proedures we shall introdue the notion of a proedure environment.It will be a total funtion that will assoiate eah proedure with the e�et ofexeuting its body. This means that a proedure environment, envP , will be anelement ofEnvP = Pname ! (Store ,! Store)Remark This notion of proedure environment di�ers from that of the operationalapproah. 2The proedure environment is updated using the semanti funtion DPds forproedure delarations. It has funtionalityDPds: DeP ! EnvV ! EnvP ! EnvPSo given the urrent variable environment and the urrent proedure environmentthe funtion DPds[[DP ℄℄ will update the proedure environment. The variable envi-ronment must be available beause proedures must know the variables that havebeen delared so far. An example is the statement

122 4 Denotational SemantisDPds[[pro p is S ; DP ℄℄envV envP = DPds[[DP ℄℄envV (envP [p 7!g ℄)where g = Sds[[S ℄℄envV envPDPds[["℄℄envV = idTable 4.4: Denotational semantis for non-reursive proedure delarationsbegin var x := 7; pro p is x := 0;begin var x := 5; all p endendwhere the body of p must know that a variable x has been delared in the outerblok.The semanti lauses de�ning DPds in the ase of non-reursive proedures aregiven in Table 4.4. In the lause for proedure delarations we use the semantifuntion Sds for statements (de�ned below) to determine the meaning of the bodyof the proedure using that envV and envP are the environments at the point ofdelaration. The variables ourring in the body S of p will therefore be bound tothe loations of the variables as known at the time of delaration but the valuesof the loations will not be known until the time of all. In this way we ensurethat we obtain stati sope for variables. Also an ourrene of all p 0 in thebody of the proedure will refer to a proedure p 0 mentioned in envP , that is aproedure delared in an outer blok or in the urrent blok but preeding thepresent proedure. In this way we obtain stati sope for proedures. This will beillustrated in Exerise 4.67 below.The semanti funtion Sds for ProThe meaning of a statement depends on the variables and proedures that havebeen delared. Therefore the semanti funtion Sds for statements in Pro willhave funtionalitySds: Stm ! EnvV ! EnvP ! (Store ,! Store)The funtion is de�ned by the lauses of Table 4.5. In most ases the de�nition ofSds is a straightforward modi�ation of the lauses of S 0ds. Note that the meaningof a proedure all is obtained by simply onsulting the proedure environment.Example 4.66 This example shows how we obtain stati sope rules for the vari-ables. Consider the appliation of the semanti funtion Sds to the statementbegin var x := 7; pro p is x := 0;begin var x := 5; all p endend

4.5 Extensions of While 123Sds[[x :=a℄℄envV envP sto = sto[l 7!A[[a℄℄(lookup envV sto)℄where l = envV xSds[[skip℄℄envV envP = idSds[[S 1 ; S 2℄℄envV envP = (Sds[[S 2℄℄envV envP) Æ (Sds[[S 1℄℄envV envP)Sds[[if b then S 1 else S 2℄℄envV envP =ond(B[[b℄℄Æ(lookup envV), Sds[[S 1℄℄envV envP ,Sds[[S 2℄℄envV envP)Sds[[while b do S ℄℄envV envP = FIX Fwhere F g = ond(B[[b℄℄Æ(lookup envV),g Æ (Sds[[S ℄℄envV envP), id)Sds[[begin DV DP S end℄℄envV envP sto = Sds[[S ℄℄env 0V env 0P sto 0where DVds[[DV ℄℄(envV , sto) = (env 0V , sto 0)and DPds[[DP ℄℄env 0V envP = env 0PSds[[all p℄℄envV envP = envP pTable 4.5: Denotational semantis for ProAssume that the initial environments are envV and envP and that the initialstore sto has sto next = 12. Then the �rst step will be to update the variableenvironment with the delarations of the outer blok:DVds[[var x := 7;℄℄(envV , sto)= DVds[["℄℄(envV [x7!12℄, sto[127!7℄[next7!13℄)= (envV [x7!12℄, sto[127!7℄[next7!13℄)Next we update the proedure environment:DPds[[pro p is x := 0;℄℄(envV [x7!12℄) envP= DPds[["℄℄(envV [x7!12℄) (envP [p7!g ℄)= envP [p7!g ℄whereg sto = Sds[[x := 0℄℄(envV [x7!12℄) envP sto= sto[127!0℄

124 4 Denotational Semantisbeause x is to be found in loation 12 aording to the variable environment.Then we getSds[[begin var x := 7; pro p is x := 0;begin var x := 5; all p end end℄℄envV envP sto= Sds[[begin var x := 5; all p end℄℄ (envV [x7!12℄) (envP [p7!g ℄)(sto[127!7℄[next7!13℄)For the variable delarations of the inner blok we haveDVds[[var x := 5;℄℄(envV [x7!12℄, sto[127!7℄[next7!13℄)= DVds[["℄℄(envV [x7!13℄, sto[127!7℄[137!5℄[next7!14℄)= (envV [x7!13℄, sto[127!7℄[137!5℄[next7!14℄)and DPds[["℄℄(envV [x7!13℄) (envP [p7!g ℄) = envP [p7!g ℄Thus we getSds[[begin var x := 5; all p end℄℄ (envV [x7!12℄) (envP [p7!g ℄)(sto[127!7℄[next7!13℄)= Sds[[all p℄℄(envV [x7!13℄) (envP [p7!g ℄)(sto[127!7℄[137!5℄[next7!14℄)= g (sto[127!7℄[137!5℄[next7!14℄)= sto[127!0℄[137!5℄[next7!14℄so we see that in the �nal store the loation for the loal variable has the value 5and the one for the global variable has the value 0. 2Exerise 4.67 Consider the following statement in Pro:begin var x := 0;pro p is x := x+1;pro q is all p;begin pro p is x := 7;all qendendUse the semanti lauses of Pro to illustrate that proedures have stati sope,that is show that the �nal store will assoiate the loation of x with the value 1(rather than 7). 2

4.5 Extensions of While 125DPds[[pro p is S ; DP ℄℄envV envP = DPds[[DP ℄℄envV (envP [p 7!FIX F ℄)where F g = Sds[[S ℄℄envV (envP [p 7!g ℄)DPds[["℄℄envV = idTable 4.6: Denotational semantis for reursive proedure delarationsReursive proeduresIn the ase where proedures are allowed to be reursive we shall be interested ina funtion g in Store ,! Store satisfyingg = Sds[[S ℄℄envV (envP [p 7!g ℄)sine this will ensure that the meaning of all the reursive alls is the same as thatof the proedure being de�ned. For this only the lause for DPds[[pro p is S ; DP ℄℄needs to be modi�ed and the new lause is given in Table 4.6. We shall see inExerise 4.69 that this is a permissible de�nition, that is F of Table 4.6 is indeedontinuous.Remark Let us briey ompare the above semantis with the operational seman-tis given in Setion 2.5 for the same language. In the operational semantis thepossibility of reursion is handled by updating the environment eah time the pro-edure is alled and, exept for reording the delaration, no ation takes plaewhen the proedure is delared. In the denotational approah, the situation is verydi�erent. The possibility of reursion is handled one and for all, namely whenthe proedure is delared. 2Exerise 4.68 Consider the delaration of the fatorial proedurepro fa is begin var z := x;if x = 1 then skipelse (x := x � 1; all fa; y := z ? y)end;Assume that the initial environments are envV and envP and that envV x = lxand envV y = ly. Determine the updated proedure environment. 2As for While we must ensure that the semanti lauses de�ne a total funtionSds. We leave the details to the exerise below.Exerise 4.69 ** To ensure that the lauses for Sds de�ne a total funtion wemust show that FIX is only applied to ontinuous funtions. In the ase of reursiveproedures this is a rather laborious task. First one may use strutural indutionto show that DVds is indeed a well-de�ned funtion. Seondly one may de�ne

126 4 Denotational SemantisenvP v0 env 0P if and only if envP p v env 0P p for all p 2 Pnameand show that (EnvP, v0) is a po. Finally, one may use Exerise 4.41 (with Dbeing Store ,! Store) to show that for all envV 2 EnvV the lauses of Tables4.3, 4.5 and 4.6 do de�ne ontinuous funtionsSds[[S ℄℄envV : EnvP ! (Store ,! Store)DPds[[DP ℄℄envV : EnvP ! EnvPThis is performed using mutual strutural indution on statements S and dela-rations DP. 2Exerise 4.70 Modify the syntax of proedures so that they take two all-by-value parameters:DP ::= pro p(x 1,x 2) is S ; DP j "S ::= � � � j all p(a1,a2)The meaning of a proedure will now depend upon the values of its parametersas well as the state in whih it is exeuted. We therefore hange the de�nition ofEnvP to beEnvP = Pname ! ((Z � Z) ! (Store ,! Store))so that given a pair of values and a store we an determine the �nal store. Modifythe de�nition of Sds to use this proedure environment. Also provide semantilauses for DPds in the ase of non-reursive as well as reursive proedures. Con-strut statements that illustrate how the new lauses are used. 2Exerise 4.71 * Modify the semantis of Pro so that dynami sope rules areemployed for variables as well as proedures. 2The onept of ontinuationsAnother important onept from denotational semantis is that of ontinuations.To illustrate it we shall onsider an extension of While where exeptions an beraised and handled. The new language is alled Ex and its syntax is:S ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do S j begin S 1 handle e: S 2 end j raise eThe meta-variable e ranges over the syntati ategory Exeption of exeptions.The statement raise e is a kind of jump instrution: when it is enountered, theexeution of the enapsulating blok is stopped and the ow of ontrol is given tothe statement delaring the exeption e. An example is the statement

4.5 Extensions of While 127begin while true do if x�0then raise exitelse x := x�1handle exit: y := 7endAssume that s0 is the initial state and that s0 x > 0. Then the false branh of theonditional will be hosen and the value of x deremented. Eventually, x gets thevalue 0 and the true branh of the onditional will raise the exeption exit. Thiswill ause the exeution of the while-loop to be terminated and ontrol will betransferred to the handler for exit. Thus the statement will terminate in a statewhere x has the value 0 and y the value 7.The meaning of an exeption will be the e�et of exeuting the remainder ofthe program starting from the handler. Consider a statement of the form(if b then S 1 else S 2) ; S 3In the language While it is evident that independently of whether we exeuteS 1 or S 2 we have to ontinue with S 3. When we introdue exeptions this doesnot hold any longer: if one of the branhes raises an exeption not handled insidethat branh, then we will ertainly not exeute S 3. It is therefore neessary torewrite the semantis of While to make the \e�et of exeuting the remainder ofthe program" more expliit.Continuation style semantis for WhileIn a ontinuation style semantis the ontinuations desribe the e�et of exeutingthe remainder of the program. For us a ontinuation is an element of the domainCont = State ,! Stateand is thus a partial funtion from State to State. Sometimes one uses partialfuntions from State to a \simpler" setAns of answers but in all ases the purposeof a ontinuation is to express the \outome" of the remainder of the program whenstarted in a given state.Consider a statement of the form � � �; S ; � � � and let us explain the meaning ofS in terms of the e�et of exeuting the remainder of the program. The startingpoint will be the ontinuation determining the e�et of exeuting the part ofthe program after S , that is s is the state obtained when the remainder of theprogram is exeuted from state s. We shall then determine the e�et of exeutingS and the remainder of the program, that is we shall determine a ontinuation 0suh that 0 s is the state obtained when exeuting S and the part of the programfollowing S from state s. Pitorially, from

128 4 Denotational SemantisS 0s[[x :=a℄℄ s = (s[x 7!A[[a℄℄s℄)S 0s[[skip℄℄ = idS 0s[[S 1 ; S 2℄℄ = S 0s[[S 1℄℄ Æ S 0s[[S 2℄℄S 0s[[if b then S 1 else S 2℄℄ = ond(B[[b℄℄, S 0s[[S 1℄℄, S 0s[[S 2℄℄)S 0s[[while b do S ℄℄ = FIX Gwhere (G g) = ond(B[[b℄℄, S 0s[[S ℄℄(g),)Table 4.7: Continuation style semantis for While� � � ; S ; � � �| {z }we want to obtain� � � ; S ; � � �| {z } 0We shall de�ne a semanti funtion S 0s for While that ahieves this. It hasfuntionalityS 0s: Stm ! (Cont ! Cont)and is de�ned in Table 4.7. The lauses for assignment and skip are straightfor-ward; however, note that we now use id as the identity funtion on Cont, that isid s = s. In the lause for omposition the order of the funtional ompositionis reversed ompared with the diret style semantis of Table 4.1. Intuitively, thereason is that the ontinuations are \pulled bakwards" through the two state-ments. So assuming that is the ontinuation for the remainder of the programwe shall �rst determine a ontinuation for S 2 followed by the remainder of theprogram and next for S 1 followed by S 2 and the remainder of the program.The lause for the onditional is straightforward as the ontinuation appliesto both branhes. In the lause for the while-onstrut we use the �xed pointoperator as in the diret style semantis. If the test of while b do S evaluates to� then we return the ontinuation for the remainder of the program. If the testevaluates to tt then g denotes the e�et of exeuting the remainder of the loopfollowed by the remainder of the program and is the ontinuation to be used forthe �rst unfolding of the loop.Example 4.72 Consider the statement z := x; x := y; y := z of Chapter 1. Letid be the identity funtion on State. Then we have

4.5 Extensions of While 129S 0s[[z := x; x := y; y := z℄℄id= (S 0s[[z := x℄℄ Æ S 0s[[x := y℄℄ Æ S 0s[[y := z℄℄) id= (S 0s[[z := x℄℄ Æ S 0s[[x := y℄℄) g1where g1 s = id(s[y7!(s z)℄)= S 0s[[z := x℄℄g2where g2 s = g1(s[x7!(s y)℄)= id(s[x7!(s y)℄[y7!(s z)℄)= g3 where g3 s = g2(s[z7!(s x)℄)= id(s[z7!(s x)℄[x7!(s y)℄[y7!(s x)℄)Note that the semanti funtion is onstruted in a \bakwards" manner. 2As in the ase of the diret style semantis we must ensure that the semantilauses de�ne a total funtion S 0s. We leave the details to the exerise below.Exerise 4.73 ** To ensure that the lauses for S 0s de�ne a total funtion wemust show that FIX is only applied to ontinuous funtions. First one may de�neg1 v0 g2 if and only if g1 v g2 for all 2 Contand show that (Cont ! Cont, v0) is a po. Seondly, one may de�ne[Cont ! Cont℄ = f g : Cont ! Cont j g is ontinuous gand show that ([Cont! Cont℄, v0) is a po. Finally, one may use Exerise 4.41(with D = [Cont! Cont℄) to show that the lauses of Table 4.7 de�ne a funtionS 0s: [Cont ! Cont℄using strutural indution on S . 2Exerise 4.74 * Prove that the two semanti funtions Sds and S 0s satisfyS 0s[[S ℄℄ = Æ Sds[[S ℄℄for all statements S of While and for all ontinuations . 2Exerise 4.75 Extend the languageWhile with the onstrut repeat S until band give the new (ompositional) lause for S 0s. 2

130 4 Denotational SemantisSs[[x :=a℄℄envE s = (s[x 7!A[[a℄℄s℄)Ss[[skip℄℄envE = idSs[[S 1 ; S 2℄℄envE = (Ss[[S 1℄℄envE) Æ (Ss[[S 2℄℄envE)Ss[[if b then S 1 else S 2℄℄envE =ond(B[[b℄℄, Ss[[S 1℄℄envE , Ss[[S 2℄℄envE)Ss[[while b do S ℄℄envE = FIX Gwhere (G g) = ond(B[[b℄℄, Ss[[S ℄℄envE (g),)Ss[[begin S 1 handle e: S 2 end℄℄envE =Ss[[S 1℄℄(envE[e 7!Ss[[S 2℄℄envE ℄) Ss[[raise e℄℄envE = envE eTable 4.8: Continuation style semantis for ExThe semanti funtion Ss for ExIn order to keep trak of the exeptions that have been introdued we shall use anexeption environment. It will be an element, envE, ofEnvE = Exeption ! ContGiven an exeption environment envE and an exeption e, the e�et of exeutingthe remainder of the program starting from the handler for e will then be envE e.The semanti funtion Ss for the statements of the language Ex has fun-tionalitySs: Stm ! EnvE ! (Cont ! Cont)The funtion is de�ned by the lauses of Table 4.8. Most of the lauses are straight-forward extensions of those given forWhile in Table 4.7. The meaning of the blokonstrut is to exeute the body in the updated environment. Therefore the envi-ronment is updated so that e is bound to the e�et of exeuting the remainder ofthe program starting from the handler for e and this is the ontinuation obtainedby exeuting �rst S 2 and then the remainder of the program, that is Ss[[S 2℄℄envE. Finally, in the lause for raise e we ignore the ontinuation that is otherwisesupplied. So rather than using we hoose to use envE e.Example 4.76 Let envE be an initial environment and assume that the initialontinuation is the identity funtion, id. Then we have

4.5 Extensions of While 131Ss[[begin while true do if x�0 then raise exit else x := x�1handle exit: y := 7 end℄℄envE id= (FIX G) idwhere G is de�ned byG g s = ond(B[[true℄℄,ond(B[[x�0℄℄, exit, S s[[x := x�1℄℄envE[exit 7!exit℄ (g)),) s= 8<: exit s if s x � 0(g) (s[x7!(s x)�1℄) if s x > 0and the ontinuation exit assoiated with the exeption exit is given byexit s = id (s[y7!7℄) = s[y7!7℄Note that G may hoose to use the \default" ontinuation or the ontinuationexit assoiated with the exeption, as appropriate. We then get(FIX G) id s = 8<: s[y7!7℄ if s x � 0s[x7!0℄[y7!7℄ if s x > 0 2Exerise 4.77 Show that FIX G as spei�ed in the above example is indeed theleast �xed point, that is onstrut the iterands Gn ? and show that their leastupper bound is as spei�ed. 2Exerise 4.78 ** Extend Exerise 4.73 to show the well-de�nedness of the fun-tion Ss de�ned by the lauses of Table 4.8. 2Exerise 4.79 Suppose that there is a distinguished output variable out 2 Varand that only the �nal value of this variable is of interest. This might motivatede�ningCont = State ,! ZDe�ne the initial ontinuation 0 2 Cont. What hanges to EnvE, the funtion-ality of Ss and Table 4.8 are neessary? 2

132 4 Denotational Semantis

Chapter 5Stati Program AnalysisWhen implementing a programming language it is ruial that the implementa-tion is faithful to the semantis of the language and in Chapter 3 we saw how theoperational semantis ould be used to prove this formally. However, it is also im-portant that the implementation is reasonably eÆient and it is therefore ommonto ombine the ode generation with various analyses olleting information aboutthe programs. In this hapter we shall develop one suh analysis in detail but letus �rst onsider a ouple of example analyses.Constant propagation is an analysis that determines whether an expressionalways evaluates to a onstant value and if so determines that value. The analysisis the basis for an optimization alled onstant folding where the expression isreplaed by the onstant. As an example the analysis will detet that the value ofy in the statementx := 5; y := x ? x + 25will always be 50. It is therefore safe to replae the statement byx := 5; y := 50and more eÆient ode an be generated.Another example is the detetion of signs analysis where the idea is to deter-mine the sign of expressions. So it will for example determine that the value of yin y := x ? x + 25always will be positive (independently of the value assigned to x). This informationwill be useful for an optimization known as ode elimination: in a statement asy := x ? x + 25; while y � 0 do � � �133

134 5 Stati Program Analysisthere is no need to generate ode for the while-loop beause it will never beexeuted.The example analysis to be developed in this hapter is a dependeny analysis.Here the idea is to regard some of the variables as input variables and others asoutput variables. The analysis will then determine whether or not the �nal valuesof the output variables only depend upon the initial values of the input variables. Ifso we shall say that there is a funtional dependeny between the input and outputvariables of the statement. As an example onsider one more the statementy := x ? x + 25and assume that x is an input variable and y an output variable. Then the analysiswill onlude that there is indeed a funtional dependeny between the input andoutput variables for the above statement. However, if x is not an input variablethen the analysis will determine that the value of y is dubious as it does not solelydepend on the values of the input variables. In that ase the ompiler might hooseto issue a warning as this probably is not the intention of the programmer.A more interesting example program is the fatorial statement:y := 1; while : (x = 1) do (y := y ? x; x := x � 1)Again assume that x is an input variable and that y is an output variable. Thenthe �nal value of y only depends upon the initial value of x. However, if we dropthe initialization of y (and assume that y is not an input variable) and onsiderthe statementwhile : (x = 1) do (y := y ? x; x := x � 1)then the �nal value of y does not only depend on the initial value of the inputvariable x, but also on the initial value of y, so it is not the ase that the �nal valuesof the output variables only depend on the initial values of the input variables.The kind of analyses exempli�ed above an be spei�ed by de�ning so-allednon-standard semantis of the programming language. These semantis will bepatterned after the denotational semantis of Chapter 4 but they di�er in thatthey do not operate on the exat values of variables and expressions but rather onproperties of the exat values. For the onstant propagation analysis we may useproperties likeany, onst-0, onst-1, onst-2, � � �For the detetion of signs analysis we may use properties likeany, pos, neg, and zeroand for the dependeny analysis we may use properties

5.1 Properties and property states 135d? (meaning dubious) and ok (meaning proper)Usually, the analyses will be part of a ompiler and it is therefore importantthat they always terminate even for programs that loop when exeuted. The priewe pay for always getting answers is that we oasionally get impreise answers. Soin the ase of onstant propagation the property any means that the analysis wasnot able to detet that the value always would be onstant. Similarly, the propertyany for the detetion of signs analysis means that the analysis was not able todetet a unique sign for the value. For the dependeny analysis the property d?means that the analysis was not able to detet that the value only depends onthe input variables. Note that an analysis that always returns these \fail-safe"properties will be a safe analysis although not a very informative one. Also notethat in the ase of the dependeny analysis we ould always expet the answer okif all variables were regarded as input variables but again this is not what we areinterested in.The analysis we shall develop will detet whether or not a statement de�nitelyhas a funtional dependeny between its input and output variables. The overallalgorithm operates as follows: initially all input variables have the property okand all other variables the property d?. Then the analysis is performed and whenit has terminated the properties of the output variables are inspeted. If they areall ok then the analysis returns the answer YES and otherwise NO?. The analysisis guaranteed to give an answer within a �nite amount of time (depending uponthe statement) but the answer will not be preise in all ases. However, it willalways be safe in the sense that� if the analysis says YES then there is indeed a funtional dependeny betweeninput and output, but� if the analysis says NO? then there may or may not be a funtional depen-deny between input and output.The analysis will be spei�ed ompositionally just as the denotational semantis ofChapter 4. As mentioned above the main di�erene between the analysis and thedenotational semantis is that the analysis does not operate on exat values butrather on properties of exat values. Beause of the lose orrespondene betweenthe spei�ation of the analysis and the denotational semantis we shall prove thesafety of the analysis with respet to the denotational semantis.5.1 Properties and property statesFor the dependeny analysis we shall be interested in two properties:� ok meaning that the value de�nitely only depends on the initial values ofthe input variables, and

136 5 Stati Program Analysis� d? meaning that the value may depend on the initial values of non-inputvariables, that is the value may be dubious.We shall writeP = fok, d?gfor this set of properties and we use p as a meta-variable ranging over P. It ismore informative to know that an expression has the property ok than d?. As areord of this we de�ne a partial order vP on P:ok vP d?, ok vP ok, d? vP d?and depited as� ok� d?
Thus the more informative property is at the bottom of the ordering! We haveFat 5.1 (P, vP) is a omplete lattie. If Y is a subset of P thenFPY = d? if and only if d? 2 YProof: The proof is straightforward using the de�nition of omplete latties givenin Chapter 4. 2It is onvenient to write p1 tP p2 instead of FPfp1, p2g. It follows from Fat5.1 that the binary operation tP may be given by the tabletP ok d?ok ok d?d? d? d?When reasoning about the safety of the analysis we need to be a bit more preiseabout the meaning of the properties with respet to the values of the denotationalsemantis. While it may be intuitively lear whether or not the value of a variableonly depends on the input variables, it turns out to be impossible to inspet aspei� value, for example 27, and deide whether or not this is indeed the ase.The reason is that we lose the ontext in whih the value arises. We shall solvethis diÆulty in Setion 5.3 and to prepare for the solution we shall de�ne thefollowing parameterized relations:relAexp: P ! (Z � Z ! T)relBexp: P ! (T � T ! T)

5.1 Properties and property states 137For arithmeti expressions the relation is de�ned by:relAexp(p)(v 1, v 2) = 8<: tt p = d? or v 1 = v 2� otherwiseand similarly for boolean expression:relBexp(p)(v 1, v 2) = 8<: tt p = d? or v 1 = v 2� otherwiseWe shall often omit the subsript when no onfusion is likely to result. Eahof the relations take a property and two values as parameters. Intuitively, theproperty expresses how muh the two values are allowed to di�er. Thus d? putsno requirements on the values whereas ok requires that the two values are equal.As an aid to readability we shall often writev 1 � v 2 rel pinstead of rel(p)(v 1, v 2) and we shall say that v 1 and v 2 are equal as far as p isonerned (or relative to p).Property statesIn the operational and denotational semantis a state maps variables to theirvalues. In the analysis the ounterpart of this will be a property state whih mapsvariables to properties, that is essentially a funtion in Var! P. The idea is thatthe initial property state will only map the input variables to ok and that if the�nal property state is aeptable and maps all output variables to ok then theoutput of the statement will de�nitely be funtionally dependent on the input.To make this idea work we have to extend the property state to model oneadditional phenomenon, namely the \ow of ontrol". We shall illustrate this inExample 5.3 below but let us �rst introdue some notation that will handle theproblem. The set PState of property states ranged over by the meta-variable ps,is de�ned byPState = (Var [fon-trakg) ! Pwhere `on-trak' is a speial token used to model the \ow of ontrol". If `on-trak'is mapped to ok this means that the \ow of ontrol" only depends upon thevalues of the input variables; if it is mapped to d? this need not be the ase. Fora property state ps 2 PState we de�ne the setOK(ps) = f x 2 Var [fon-trakg j ps x = ok gof \variables" mapped to ok and we say that

138 5 Stati Program Analysisps is proper if and only if ps(on-trak) = ok.If ps is not proper we shall sometimes say that it is improper.The relationship between property states and states is given by the parameter-ized relation:relStm: PState ! (State � State ! T)de�ned byrelStm(ps)(s1, s2) = 8>>><>>>: tt if ps on-trak = d?or 8 x 2 Var \ OK(ps): s1 x = s2 x� otherwiseand again we may omit the subsript when no onfusion is likely to our. Therelation expresses the extent to whih two states are allowed to di�er as far as agiven property state is onerned. If ps is not proper then rel(ps) will hold on anytwo states. However, if ps is proper then rel(ps) will hold on two states if they areequal on the variables in OK(ps). Phrased di�erently, we may view ps as a pairof glasses that only allows us to see part of the states and rel(ps)(s1, s2) meansthat s1 and s2 look the same when viewed through that pair of glasses. Again weshall writes1 � s2 rel psfor rel(ps)(s1, s2).Example 5.2 Let s1, s2 and ps be given bys1 x = 1 and s1 y = 0 for y 2 Varnfxgs2 x = 2 and s2 y = 0 for y 2 Varnfxgps x = d? and ps y = ok for y 2 (Var [fon-trakg)nfxgThen s1 � s2 rel ps. 2Example 5.3 To motivate the need for improper property states, that is the needfor `on-trak', onsider the following statements:S 1: x := 1S 2: x := 2It would be natural to expet that the analysis of S 1 will map any property stateps to the property state ps[x7!ok℄ sine a onstant value annot depend on thevalue of any (non-input) variable. A similar argument holds for S 2. Now onsiderthe statements

5.1 Properties and property states 139S 11: if x = 1 then S 1 else S 1S 12: if x = 1 then S 1 else S 2Again we may expet that the analysis of S 11 will map any property state ps tothe property state ps[x7!ok℄, sine S 11 is semantially equivalent to S 1.Conerning S 12 it will not always be orret for the analysis to map a propertystate ps to ps[x7!ok℄. For an example suppose that ps, s1 and s2 are suh thatps x = d? and ps y = ok for y 2 (Var [fon-trakg)nfxgs1 x = 1 and s1 y = 0 for y 2 Varnfxgs2 x = 2 and s2 y = 0 for y 2 VarnfxgThen Example 5.2 givess1 � s2 rel psbut Sds[[S 12℄℄s1 � Sds[[S 12℄℄s2 rel ps[x7!ok℄ fails beause Sds[[S 12℄℄s1 = s1 andSds[[S 12℄℄s2 = s2 and s1 x 6= s2 x.However, from the point of view of the analysis there is no di�erene betweenS 1 and S 2 beause neither the value of 1 nor 2 depends on the values of the inputvariables. Sine the analysis is ompositionally de�ned this means that therean be no di�erene between S 11 and S 12 from the point of view of the analysis.Therefore we have to aept that also the analysis of S 11 should not allow mappingan arbitrary property state ps to ps[x7!ok℄.The di�erene between S 1 and S 2 arises when the \ow of ontrol" does notdepend on the input variables and it is here the need for the speial token `on-trak'omes in. We shall transform a property state into an improper one, by mapping`on-trak' to d?, whenever the \ow of ontrol" is not \funtionally dependent"on the input variables. Thus if ps x = d? then it is the test, x = 1, in S 11and S 12 that will be responsible for mapping ps into the improper property stateps[on-trak7!d?℄ and then the e�et of analysing S 1 and S 2 does not matter aslong as an improper property state is not mapped into a proper one. 2Our next task will be to endow PState with some partially ordered strutureand to investigate the properties of relStm. Conerning the former this will be aninstane of a general proedure:Lemma 5.4 Assume that S is a non-empty set and that (D , v) is a partiallyordered set. Let v0 be the ordering on the set S!D de�ned byf 1 v0 f 2 if and only if f 1 x v f 2 x for all x 2 SThen (S!D , v0) is a partially ordered set. Furthermore, (S!D , v0) is a po ifD is and it is a omplete lattie if D is. In both ases we have

140 5 Stati Program Analysis(F0Y) x = F f f x j f 2 Y gso that least upper bounds are determined pointwise.Proof: It is straightforward to verify that v0 is a partial order so we omit thedetails. We shall �rst prove the lemma in the ase where D is a omplete lattieso let Y be a subset of S ! D . Then the formula(F0Y) x = F f f x j f 2 Y gde�nes an element F0Y of S ! D beause D being a omplete lattie means thatFf f x j f 2 Y g exists for all x of S . This shows that F0Y is a well-de�nedelement of S ! D . To see that F0Y is an upper bound of Y let f 0 2 Y and weshall show that f 0 v0 F0Y . This amounts to onsidering an arbitrary x in S andshowingf 0 x v Ff f x j f 2 Y gand this is immediate beause F is the least upper bound operation in D . To seethat F0Y is the least upper bound of Y let f 1 be an upper bound of Y and weshall show that F0Y v0 f 1. This amounts to showingFf f x j f 2 Y g v f 1 xfor an arbitrary x 2 S . However, this is immediate beause f 1 x must be an upperbound of f f x j f 2 Y g and beause F is the least upper bound operation in D .To prove the other part of the lemma assume that D is a po and that Y isa hain in S ! D . The formula(F0Y) x = F f f x j f 2 Y gde�nes an element F0Y of S ! D : eah f f x j f 2 Y g will be a hain in Dbeause Y is a hain and hene eah Ff f x j f 2 Y g exists beause D is a po.That F0Y is the least upper bound of Y in S ! D follows as above. 2Instantiating S to be Var [fon-trakg and D to be P we get:Corollary 5.5 Let vPS be the ordering on PState de�ned byps1 vPS ps2 if and only if ps1 x vP ps2 x for all x 2 Var [fon-trakgThen (PState, vPS) is a omplete lattie. In partiular, the least upper boundFPSY of a subset Y of PState is haraterized by(FPSY) x = FP f ps x j ps 2 Y g

5.1 Properties and property states 141We shall write lost for the property state ps that maps all variables to d? andthat maps `on-trak' to d?. Similarly, we shall write init for the property statethat maps all variables to ok and that maps `on-trak' to ok. Note that init isthe least element of PState.Exerise 5.6 (Essential) Show thatps1 vPS ps2 if and only if OK(ps1) � OK(ps2)Next show thatOK(FPS Y) = Tf OK(ps) j ps 2 Y gwhenever Y is a non-empty subset of PState. 2Properties of relTo study the properties of the parameterized relation rel we need a notion of anequivalene relation. A relationR: E � E ! Tis an equivalene relation on a set E if and only ifR(e1, e1) (reexivity)R(e1, e2) and R(e2, e3) imply R(e1, e3) (transitivity)R(e1, e2) implies R(e2, e1) (symmetry)for all e1, e2 and e3 of E .Exerise 5.7 Show that relAexp(p), relBexp(p) and relStm(ps) are equivalene re-lations for all hoies of p 2 P and ps 2 PState. 2Eah of relAexp, relBexp and relStm are examples of parameterized (equivalene)relations. In general a parameterized relation is of the formR: D ! (E � E ! T)where (D , v) is a partially ordered set, E is a set and eah R(d) is a relation. Weshall say that a parameterized relation R is a Kripke-relation ifd1 v d2 implies that for all e1, e2 2 E :if R(d1)(e1, e2) then R(d2)(e1, e2)Note that this is a kind of monotoniity property.

142 5 Stati Program Analysis
Lemma 5.8 relStm is a Kripke-relation.Proof: Let ps1 and ps2 be suh that ps1 vPS ps2 and assume thats1 � s2 rel ps1holds for all states s1 and s2. We must shows1 � s2 rel ps2If ps2 on-trak = d? this is immediate from the de�nition of relStm. So assumethat ps2 on-trak = ok. In this ase we must show8x 2 OK(ps2) \ Var: s1 x = s2 xSine ps1 vPS ps2 and ps2 on-trak = ok it must be the ase that ps1 on-trak isok. From s1 � s2 rel ps1 we therefore get8x 2 OK(ps1) \ Var: s1 x = s2 xFrom Exerise 5.6 and the assumption ps1 vPS ps2 we get OK(ps1) � OK(ps2)and thereby we get the desired result. 2Exerise 5.9 (Essential) Show that relAexp and relBexp are Kripke-relations. 25.2 The analysisWhen speifying the analysis we shall be onerned with expressions as well asstatements.ExpressionsThe analysis of an arithmeti expression a will be spei�ed by a (total) funtionPA[[a℄℄ from property states to properties:PA: Aexp ! (PState ! P)Similarly, the analysis of a boolean expression b will be de�ned by a (total) funtionPB[[b℄℄ from property states to properties:PB: Bexp ! (PState ! P)

5.2 The analysis 143PA[[n℄℄ps = 8<: ok if ps on-trak = okd? otherwisePA[[x ℄℄ps = 8<: ps x if ps on-trak = okd? otherwisePA[[a1 + a2℄℄ps = (PA[[a1℄℄ps) tP (PA[[a2℄℄ps)PA[[a1 ? a2℄℄ps = (PA[[a1℄℄ps) tP (PA[[a2℄℄ps)PA[[a1 � a2℄℄ps = (PA[[a1℄℄ps) tP (PA[[a2℄℄ps)PB[[true℄℄ps = 8<: ok if ps on-trak = okd? otherwisePB[[false℄℄ps = 8<: ok if ps on-trak = okd? otherwisePB[[a1 = a2℄℄ps = (PA[[a1℄℄ps) tP (PA[[a2℄℄ps)PB[[a1 � a2℄℄ps = (PA[[a1℄℄ps) tP (PA[[a2℄℄ps)PB[[: b℄℄ps = PB[[b℄℄psPB[[b1 ^ b2℄℄ps = (PB[[b1℄℄ps) tP (PB[[b2℄℄ps)Table 5.1: Analysis of expressionsThe de�ning lauses are given in Table 5.1. The lause for n reets that the valueof n in a proper property state ps does not depend on any variable and thereforeit will have the property ok. The property of a variable x in a proper propertystate ps is the property bound to x in ps, that is ps x . Thus if ps is the initialproperty state then the intention is that PA[[x ℄℄ps is ok if and only if x is one ofthe input variables. For a omposite expression, like a1 + a2, the idea is that itan only have the property ok if both subexpressions have that property. This isensured by the binary operation tP introdued in Setion 5.1.Example 5.10 If ps x = ok and ps on-trak = ok then PA[[x + 1℄℄ps = oksine PA[[x℄℄ps = ok and PA[[1℄℄ps = ok. On the other hand, if ps x = d? thenPA[[x + 1℄℄ps = d? beause PA[[x℄℄ps = d?.Furthermore, PB[[x = x℄℄ps = d? if ps x = d? even though the test x = x willevaluate to tt independently of whether or not x is initialized properly. 2The funtions PA[[a℄℄ and PB[[b℄℄ are losely onneted with the sets of freevariables de�ned in Chapter 1:

144 5 Stati Program AnalysisPS[[x := a℄℄ ps = ps[x 7!PA[[a℄℄ps℄PS[[skip℄℄ = idPS[[S 1;S 2℄℄ = PS[[S 2℄℄ Æ PS[[S 1℄℄PS[[if b then S 1 else S 2℄℄ = ondP(PB[[b℄℄, PS[[S 1℄℄, PS [[S 2℄℄)PS[[while b do S ℄℄ = FIX Hwhere H h = ondP(PB[[b℄℄, h Æ PS [[S ℄℄, id)Table 5.2: Analysis of statements in WhileExerise 5.11 (Essential) Prove that for every arithmeti expression a we havePA[[a℄℄ps = ok if and only if FV(a) [fon-trakg � OK(ps)Formulate and prove a similar result for boolean expressions. Dedue that for alla of Aexp we get PA[[a℄℄ps = d? if ps is improper, and that for all b of Bexp weget PB[[b℄℄ps = d? if ps is improper. 2StatementsTurning to statements we shall speify their analysis by a funtion PS of fun-tionality:PS : Stm ! (PState ! PState)The totality of PS [[S ℄℄ reets that we shall be able to analyse all statementsinluding a statement like while true do skip that loops. The de�nition of PS isgiven in Table 5.2 and the lauses for assignment, skip and omposition are muhas in the diret style denotational semantis of Chapter 4. The remaining lauseswill be explained below.Example 5.12 Consider the statementy := xFirst assume that ps is a proper property state with ps x = ok and ps y = d?.Then we have(PS [[y := x℄℄ps) x = ok(PS [[y := x℄℄ps) y = ok(PS [[y := x℄℄ps) on-trak = ok

5.2 The analysis 145Sine PS[[y := x℄℄ps is proper we onlude that both x and y only depend on theinput variables after y is assigned a value that only depends on the input variables.Assume next that ps y = ok but ps x = d?. Then(PS[[y := x℄℄ps) y = d?showing that when a dubious value is used in an assignment then the assignedvariable will get a dubious value as well. 2Exerise 5.13 Consider the statements S 1 and S 2 of Example 5.3. Use Tables5.1 and 5.2 to haraterize the behaviour of PS[[S 1℄℄ and PS[[S 2℄℄ on proper andimproper property states. Antiipating Setion 5.3 show thats1 � s2 rel ps implies Sds[[S i℄℄s1 � Sds[[S i℄℄s2 rel PS[[S i℄℄psfor i = 1, 2 and for all ps 2 PState. 2In the lause for if b then S 1 else S 2 we use the auxiliary funtion ondPde�ned byondP(f , h1, h2) ps = 8<: (h1 ps) tPS (h2 ps) if f ps = oklost if f ps = d?First onsider the ase where we are suessful in analysing the ondition, that iswhere f ps = ok. For eah variable x we an determine the result of analysingeah of the branhes, namely (h1 ps) x for the true branh and (h2 ps) x for thefalse branh. The least upper bound of these two results will be the new propertybound to x , that is the new property state will map x to((h1 ps) x) tP ((h2 ps) x)If the analysis of the ondition is not suessful, that is f ps = d?, then the analysisof the onditional will fail and we shall therefore use the property state lost.Example 5.14 Consider now the statementif x = x then z := y else y := zClearly, the �nal value of z an be determined uniquely from the initial value ofy. However, if z is dubious then the analysis annot give this result. To see thisassume that ps is a proper property state suh that ps x = ok, ps y = ok andps z = d?. Then(PS[[if x = x then z := y else y := z℄℄ps) z= (ondP(PB[[x = x℄℄, PS[[z := y℄℄, PS [[y := z℄℄) ps) z= (PS[[z := y℄℄ ps tP PS[[y := z℄℄ ps) z= d?

146 5 Stati Program Analysisbeause PB[[x = x℄℄ps = ok, (PS[[z := y℄℄ps) z = ok but (PS[[y := z℄℄ps) z = d?.So even though the false branh never will be exeuted it will inuene the resultobtained by the analysis.Similarly, even if y and z are not dubious but x is, the analysis annot determinethat the �nal value of z only depends on the value of y. To see this assume thatps is a proper property state suh that ps x = d?, ps y = ok and ps z = ok. Wethen getPS [[if x = x then z := y else y := z℄℄ps= ondP(PB[[x = x℄℄, PS [[z := y℄℄, PS[[y := z℄℄)ps= lostbeause PB[[x = x℄℄ps = d?. These examples show that the result of the analysisis safe but usually somewhat impreise. More omplex analyses ould do better(for example by trying to predit the outome of tests) but in general no deidableanalysis an provide exat results. 2Exerise 5.15 Consider the statements S 11 and S 12 of Example 5.3. Use Tables5.1 and 5.2 to haraterize the behaviour of PS[[S 11℄℄ and PS[[S 12℄℄ on proper andimproper property states. Antiipating Setion 5.3 show thats1 � s2 rel ps implies Sds[[S i℄℄s1 � Sds[[S i℄℄s2 rel PS [[S i℄℄psfor i = 11, 12 and for all ps 2 PState. Finally argue that it would not be sensibleto useond0P(f , h1, h2) ps = (h1 ps) tPS (h2 ps)instead of the ondP de�ned above. 2In the lause for the while-loop we also use the funtion ondP and otherwisethe lause is as in the diret style denotational semantis of Chapter 4. In partiularwe use the �xed point operation FIX as it orresponds to unfolding the while-loopa number of times | one for eah time the analysis traverses the loop. As inChapter 4 the �xed point is de�ned byFIX H = Ff H n ? j n � 0 gwhere the funtionality of H isH : (PState ! PState) ! (PState ! PState)and where PState! PState is the set of total funtions fromPState to PState.In order for this to make sense H must be a ontinuous funtion on a po with? as its least element. We shall shortly verify that this is indeed the ase.

5.2 The analysis 147Example 5.16 We are now in a position where we an attempt the appliationof the analysis to the fatorial statement:PS[[y := 1; while :(x=1) do (y := y?x; x := x�1)℄℄We shall apply this funtion to the proper property state ps0 that maps x to okand all other variables (inluding y) to d? as this orresponds to viewing x as theonly input variable of the statement.To do so we use the lauses of Tables 5.1 and 5.2 and getPS[[y := 1; while :(x=1) do (y := y?x; x := x�1)℄℄ ps0= (FIX H) (ps0[y7!ok℄)whereH h = ondP(PB[[:(x=1)℄℄, h Æ PS[[y := y?x; x := x�1℄℄, id)We �rst simplify H and obtain(H h) ps = 8<: lost if ps on-trak=d? or ps x=d?(h ps) tPS ps if ps on-trak=ok and ps x=okAt this point we shall pretend that we have shown the following property of H (tobe proved in Exerise 5.18):if H n ? = H n+1 ? for some nthen FIX H = H n ?where ? is the funtion ? ps = init for all ps. We an now alulate the iterandsH 0 ?, H 1 ?, � � �. We obtain(H 0 ?) ps = init(H 1 ?) ps = 8<: lost if ps x = d? or ps not properps if ps x = ok and ps proper(H 2 ?) ps = 8<: lost if ps x = d? or ps not properps if ps x = ok and ps properwhere ps is an arbitrary property state. Sine H 1 ? = H 2 ? our assumption aboveensures that we have found the least �xed point for H :(FIX H) ps = 8<: lost if ps x = d? or ps not properps if ps x = ok and ps properIt is now straightforward to verify that (FIX H) (ps0[y7!ok℄) y = ok and that(FIX H)(ps0[y7!ok℄) is proper. We onlude that there is a funtional dependenybetween the input variable x and the output variable y. 2

148 5 Stati Program AnalysisWell-de�nedness of PSHaving spei�ed the analysis we shall now show that it is indeed well-de�ned. Asin Chapter 4 there are three stages:� First we introdue a partial order on PState!PState suh that it beomesa po.� Then we show that ertain auxiliary funtions used in the de�nition of PSare ontinuous.� Finally we show that the �xed point operator only is applied to ontinuousfuntions.Thus our �rst task is to de�ne a partial order on PState ! PState and for thiswe use the approah developed in Lemma 5.4. Instantiating the non-empty set Sto the set PState and the partially ordered set (D , v) to (PState, vPS) we get:Corollary 5.17 Let v be the ordering on PState ! PState de�ned byh1 v h2 if and only if h1 ps vPS h2 ps for all property states psThen (PState ! PState, v) is a omplete lattie, and hene a po, and theformula for least upper bounds is(F Y) ps = FPS f h ps j h 2 Y gfor any subset Y of PState ! PState.Exerise 5.18 (Essential) Show that the assumption made in Example 5.16 isorret. That is �rst show thatH : (PState ! PState) ! (PState ! PState)as de�ned in Example 5.16 is indeed a monotone funtion. Next show that for anymonotone funtion H of the above funtionality ifH n ? = H n+1 ?for some n then H n ? is the least �xed point of H . 2Our seond task is to ensure that the funtion H used in Table 5.2 is a on-tinuous funtion from PState ! PState to PState ! PState. For this wefollow the approah of Setion 4.3 and show that ondP is ontinuous in its seondargument and later that omposition is ontinuous in its �rst argument.

5.2 The analysis 149
Lemma 5.19 Let f : PState ! P, h0: PState ! PState and de�neH h = ondP(f , h, h0)Then H : (PState!PState) ! (PState!PState) is a ontinuous funtion.Proof: We shall �rst prove that H is monotone so let h1 and h2 be suh thath1 v h2, that is h1 ps vPS h2 ps for all property states ps. We then have to showthat ondP(f , h1, h0) ps vPS ondP(f , h2, h0) ps. The proof is by ases on thevalue of f ps. If f ps = ok then the result follows sine(h1 ps) tPS (h0 ps) vPS (h2 ps) tPS (h0 ps)If f ps = d? then the result follows sine lost vPS lost.To see that H is ontinuous let Y be a non-empty hain in PState! PState.Using the haraterization of least upper bounds in PState given in Corollary 5.17we see that we must show that(H (FY)) ps = FPS f (H h) ps j h 2 Y gfor all property states ps in PState. The proof is by ases on the value of f ps.If f ps = d? then we have (H (FY)) ps = lost andFPS f (H h) ps j h 2Y g = FPS f lost j h 2 Y g= lostwhere the last equality is beause Y is not empty. Thus we have proved therequired result in this ase. If f ps = ok then the haraterization of least upperbounds in PState gives:(H (FY)) ps = ((FY) ps) tPS (h0 ps)= (FPS f h ps j h 2 Y g) tPS (h0 ps)= FPS f h ps j h 2 Y [f h0 g gand FPS f (H h) ps j h 2 Y g = FPS f (h ps) tPS (h0 ps) j h 2 Y g= FPS f h ps j h 2 Y [f h0 g gwhere the last equality follows beause Y is not empty. Thus the result follows inthis ase. 2

150 5 Stati Program AnalysisExerise 5.20 Let f : PState ! P, h0: PState ! PState and de�neH h = ondP(f , h0, h)Show that H : (PState! PState) ! (PState! PState) is a ontinuous fun-tion. 2Lemma 5.21 Let h0: PState ! PState and de�neH h = h Æ h0Then H : (PState!PState) ! (PState!PState) is a ontinuous funtion.Proof: We shall �rst show that H is monotone so let h1 and h2 be suh thath1 v h2, that is h1 ps vPS h2 ps for all property states ps. Clearly we then haveh1(h0 ps) vPS h2(h0 ps) for all property states ps and thereby we have proved themonotoniity of H .To prove the ontinuity let Y be a non-empty hain in PState ! PState.We must show that(H (FY)) ps = (Ff H h j h 2 Y g) psfor all property states ps. Using the haraterization of least upper bounds givenin Corollary 5.17 we get(H (FY)) ps = ((FY) Æ h0) ps= (FY) (h0 ps)= FPS f h (h0 ps) j h 2 Y gand (Ff H h j h 2 Y g) ps = FPS f (H h) ps j h 2 Y g= FPS f (h Æ h0) ps j h 2 Y gHene the result follows. 2This suÆes for showing the well-de�nedness of PS :Proposition 5.22 The semanti funtion PS [[S ℄℄: PState ! PState of Table5.2 is a well-de�ned funtion for all statements S of the language While.Proof: The proof is by strutural indution on S and only the ase of the while-loop is interesting. We note that the funtion H used in Table 5.2 is given by

5.2 The analysis 151H = H 1 Æ H 2whereH 1 h = ondP(PB[[b℄℄, h, id)H 2 h = h Æ PS[[S ℄℄As H 1 and H 2 are ontinuous funtions by Lemmas 5.19 and 5.21 we have thatH is a ontinuous funtion by Lemma 4.35. Hene FIX H is well-de�ned and thisompletes the proof. 2Exerise 5.23 Consider the statementz := 0; while y�x do (z := z+1; x := x�y)where x and y are input variables and z is the output variable. Use the approahof Example 5.16 to show that there is a funtional dependeny between the inputand output variables. 2Exerise 5.24 Apply the analysis PS to the statement while true do skip andexplain why the analysis terminates. 2Exerise 5.25 Extend While with the statement repeat S until b and givethe new (ompositional) lause for PS . Disuss your extension and validate thewell-de�nedness. 2Exerise 5.26 Extend While with the statement for x := a1 to a2 do S andgive the new (ompositional) lause for PS. Disuss your extension and validatethe well-de�nedness. 2Exerise 5.27 (Essential) Show that for every statement Sps on-trak v (PS[[S ℄℄ps) on-trakso that ps must be proper if PS [[S ℄℄ps is. In the ase of while b do S you should�rst prove that for all n � 1:ps on-trak v ((H n ?) ps) on-trakwhere ? ps 0 = init for all ps 0 and H h = ondP(PB[[b℄℄, h Æ PS[[S ℄℄, id). 2Exerise 5.28 Show that there exists h0: PState! PState suh that H de�nedby H h = h0 Æ h is not even a monotone funtion from PState ! PState toPState ! PState. 2

152 5 Stati Program AnalysisRemark The example of the above exerise indiates a major departure from theseure world of Chapter 4. Lukily an insurane poliy an be arranged. Thepremium is to replae all ourrenes ofPState ! PState and PState ! Pby [PState ! PState℄ and [PState ! P℄where [D ! E ℄ = f f : D ! E j f is ontinuous g. One an then show that[D ! E ℄ is a po if D and E are and that the haraterization of least upperbounds given in Lemma 5.4 still holds. Furthermore, one an show that Exerise5.6 ensures that PA[[a℄℄ and PB[[b℄℄ are ontinuous. Finally, the entire developmentin this setion still arries through although there are additional proof obligationsto be arried out. In this setting one gets that if h0: [PState ! PState℄ then Hde�ned by H h = h0 Æ h is indeed a ontinuous funtion from [PState! PState℄to [PState ! PState℄. 2To summarize, the well-de�nedness of PS relies on the following results estab-lished above: Proof Summary for While:Well-de�nedness of Stati Analysis1: The set PState ! PState equipped with an appropriate ordering v isa po (Corollary 5.17).2: Certain funtions 	: (PState ! PState) ! (PState ! PState) areontinuous (Lemmas 5.19 and 5.21).3: In the de�nition of PS we only apply the �xed point operation to ontin-uous funtions (Proposition 5.22).Our overall algorithm for determining whether or not there is a funtional depen-deny between input and output variables then proeeds as follows:INPUT: a statement S of Whilea set I � Var of input variablesa set O � Var of output variablesOUTPUT: YES, if there de�nitely is a funtional dependenyNO?, if there may not be a funtional dependeny

5.3 Safety of the analysis 153METHOD: let psI be uniquely determined by OK(psI) = I [fon-trakglet psO = PS[[S ℄℄psIoutput YES if OK(psO) � O [fon-trakgoutput NO? otherwise5.3 Safety of the analysisIn this setion we shall show that the analysis funtions PA, PB and PS areorret with respet to the semanti funtions A, B and Sds. This amounts to aformalization of the onsiderations that were already illustrated in Exerises 5.13and 5.15. We begin with the rather simple ase of arithmeti expressions.ExpressionsLet g : State ! Z be a funtion, perhaps of the form A[[a℄℄ for some arithmetiexpression a 2 Aexp, and let h: PState ! P be another funtion, perhaps ofthe form PA[[a℄℄ for some arithmeti expression a 2 Aexp. We shall introdue arelationg satAexp hfor expressing when the analysis h is orret with respet to the semantis g . It isde�ned bys1 � s2 relStm ps implies g s1 � g s2 relAexp h psfor all states s1 and s2 and property states ps. This ondition says that the resultsof g will be suitably related provided that the arguments are. It is perhaps moreintuitive when rephrased as(s1 � s2 relStm ps) and (h ps = ok) imply g s1 = g s2The safety of the analysis PA is then expressed byFat 5.29 For all arithmeti expressions a 2 Aexp we haveA[[a℄℄ satAexp PA[[a℄℄Proof: This is an immediate onsequene of Lemma 1.11 and Exerise 5.11. 2The analysis PB of boolean expressions is safe in the following sense:Exerise 5.30 (Essential)Repeat the development for boolean expressions, thatis de�ne a relation satBexp and show thatB[[b℄℄ satBexp PB[[b℄℄for all boolean expressions b 2 Bexp. 2

154 5 Stati Program AnalysisStatementsThe safety of the analysis of statements will express that if OK(ps) inludes allthe input variables and if OK(PS[[S ℄℄ps) inludes `on-trak' and all the outputvariables then Sds[[S ℄℄ determines a funtional relationship between the input andoutput variables. This validation is important beause although the intuitionabout ok meaning \depending only on input variables" goes a long way towardsmotivating the analysis, it is not perfet. As we already mentioned in Setion 5.1one annot inspet a value, like 27, and determine whether it has its value beauseit only depends on input variables or beause it just happened to be 27. To aidthe intuition in determining that no errors have been made in the de�nition ofthe analysis it is neessary to give a formal statement of the relationship betweenomputations in the standard (denotational) semantis and in the analysis.Our key tool will be the relation s1 � s2 rel ps and we shall show that if thisrelationship holds before the statement is exeuted and analysed then either thestatement will loop on both states or the same relationship will hold between the�nal states and the �nal property state (provided that the analysis does not get\lost"). We shall formalize this by de�ning a relationg satStm hbetween a funtion g : State ,! State, perhaps of the form Sds[[S ℄℄ for some S inStm, and another funtion h: PState! PState, perhaps of the form PS[[S ℄℄ forsome S in Stm. The formal de�nition amounts to(s1 � s2 rel ps) and (h ps is proper)imply(g s1 = undef and g s2 = undef) or(g s1 6= undef and g s2 6= undef and g s1 � g s2 rel h ps)for all states s1, s2 2 State and all property states ps 2 PState. To motivatethis de�nition onsider two states s1 and s2 that are equal relative to ps. If ps isproper this means that s1 x = s2 x for all variables x in OK(ps). The analysisof the statement may get \lost" in whih ase h ps is not proper and we annotdedue anything about the behaviour of the statement. Alternatively, it may bethe ase that h ps is proper and in that ase the statement must behave in thesame way whether exeuted from s1 or from s2. In partiular� the statement may enter a loop when exeuted from s1 and s2, that isg s1 = undef and g s2 = undef, or� the statement does not enter a loop when exeuted from s1 and s2, that isg s1 6= undef and g s2 6= undef.

5.3 Safety of the analysis 155In the latter ase the two �nal states g s1 and g s2 must be equal relative to theresulting property state h ps, that is (g s1) x = (g s2) x for all variables x inOK(h ps).We may then formulate the desired relationship between the semantis and theanalysis as follows:Theorem 5.31 For all statements S of While we have Sds[[S ℄℄ satStm PS[[S ℄℄.Before onduting the proof we need to establish some properties of the auxil-iary operations omposition and onditional.Lemma 5.32 Let g1, g2: State ,! State and h1, h2: PState ! PState andassume thatps on-trak vP (h2 ps) on-trak (*)holds for all ps 2 PState. Theng1 satStm h1 and g2 satStm h2 imply g2 Æ g1 satStm h2 Æ h1Proof: Let s1, s2 and ps be suh thats1 � s2 rel ps, and (h2 Æ h1) ps is properUsing that h2 (h1 ps) is proper we get from (*) that h1 ps must be proper as well(by taking ps to be h1 ps). So from the assumption g1 satStm h1 we getg1 s1 = undef and g1 s2 = undef, org1 s1 6= undef and g1 s2 6= undef and g1 s1 � g1 s2 rel h1 psIn the �rst ase we are �nished sine it follows that (g2 Æ g1) s1 = undef and that(g2 Æ g1) s2 = undef. In the seond ase we use thatg1 s1 � g1 s2 rel h1 ps, and h2(h1 ps) is properThe assumption g2 satStm h2 then givesg2 (g1 s1) = undef and g2 (g1 s2) = undef, org2 (g1 s1) 6= undef and g2 (g1 s2) 6= undef andg2(g1 s1) � g2(g1 s2) rel h2(h1 ps)In both ases we have ompleted the proof. 2

156 5 Stati Program Analysis
Lemma 5.33 Assume that g1, g2: State ,! State, and g : State ! T and thath1, h2: PState ! PState and f : PState ! P. Theng satBexp f , g1 satStm h1 and g2 satStm h2 implyond(g , g1, g2) satStm ondP(f , h1, h2)Proof: Let s1, s2 and ps be suh thats1 � s2 rel ps and ondP(f , h1, h2) ps is properFirst assume that f ps = d?. This ase turns out to be impossible sine thenondP(f , h1, h2) ps = lost so ondP(f , h1, h2) ps annot be proper.So we know that f ps = ok. From g satBexp f we then get g s1 = g s2. Wealso get that ondP(f , h1, h2) ps = (h1 ps) tPS (h2 ps). Thus h1 ps as well as h2ps must be proper sine otherwise ondP(f , h1, h2) ps annot be proper. Now leti denote the branh hosen by the test g . We then haves1 � s2 rel ps and h i ps is properFrom the assumption g i satStm h i we therefore getg i s1 = undef and g i s2 = undef, org i s1 6= undef and g i s2 6= undef and g i s1 � g i s2 rel h i psIn the �rst ase we getond(g , g1, g2) s1 = undef and ond(g , g1, g2) s2 = undefand we are �nished. In the seond ase we getond(g , g1, g2) s1 6= undef and ond(g , g1, g2) s2 6= undefFurthermore, we haveond(g , g1, g2) s1 � ond(g , g1, g2) s2 rel h i psClearly h i ps v h1 ps tPS h2 ps and using the de�nition of ondP and Lemma 5.8we getond(g , g1, g2) s1 � ond(g , g1, g2) s2 rel ondP(f , h1, h2) psas required. 2We now have the apparatus needed to show the safety of PS:Proof of Theorem 5.31: We shall show that Sds[[S ℄℄ satStm PS[[S ℄℄ and weproeed by strutural indution on the statement S .The ase x := a: Let s1, s2 and ps be given suh that

5.3 Safety of the analysis 157s1 � s2 rel ps and PS[[x := a℄℄ps is properIt then follows from Exerise 5.27 that ps is proper beause PS[[x := a℄℄ps is. Alsoboth Sds[[x := a℄℄s1 and Sds[[x := a℄℄s2 will be de�ned so we only have to show that(Sds[[x := a℄℄s1) y = (Sds[[x := a℄℄s2) yfor all y 2 Var \ OK(PS[[x := a℄℄ps). If y 6= x and y is in OK(PS[[x := a℄℄ps) theny 2 OK(ps) and it is immediate from the de�nition of Sds that (Sds[[x := a℄℄s1) y= (Sds[[x := a℄℄s2) y . If y = x and x is in OK(PS[[x := a℄℄ps) then we use theassumption s1 � s2 rel ps together with (PS [[x := a℄℄ps) x = ok to getA[[a℄℄s1 = A[[a℄℄s2by Fat 5.29. Hene (Sds[[x := a℄℄s1) y = (Sds[[x := a℄℄s2) y follows also in thisase. This proves the required relationship.The ase skip: Straightforward.The ase S 1;S 2: The indution hypothesis applied to S 1 and S 2 givesSds[[S 1℄℄ satStm PS[[S 1℄℄ and Sds[[S 2℄℄ satStm PS [[S 2℄℄It follows from Exerise 5.27 that ps on-trak vP (PS[[S 2℄℄ps) on-trak holds forall property states ps. The desired resultSds[[S 2℄℄ Æ Sds[[S 1℄℄ satStm PS [[S 2℄℄ Æ PS[[S 1℄℄then follows from Lemma 5.32.The ase if b then S 1 else S 2: From Exerise 5.30 we haveB[[b℄℄ satBexp PB[[b℄℄and the indution hypothesis applied to S 1 and S 2 givesSds[[S 1℄℄ satStm PS[[S 1℄℄ and Sds[[S 2℄℄ satStm PS [[S 2℄℄The desired resultond(B[[b℄℄, Sds[[S 1℄℄, Sds[[S 2℄℄) satStm ondP(PB[[b℄℄, PS[[S 1℄℄, PS [[S 2℄℄)then follows from Lemma 5.33.The ase while b do S : We must prove thatFIX(G) satStm FIX(H)where

158 5 Stati Program AnalysisG g = ond (B[[b℄℄, g Æ Sds[[S ℄℄, id)H h = ondP (PB[[b℄℄, h Æ PS[[S ℄℄, id)To do this we reall the de�nition of the least �xed points:FIX G = FfGn g0 j n � 0 g where g0 s = undef for all sFIX H = FfH n h0 j n � 0 g where h0 ps = init for all psThe proof proeeds in two stages. We begin by proving thatGn g0 satStm FIX H for all n (*)and thenFIX G satStm FIX H (**)We prove (*) by indution on n. For the base ase we observe thatg0 satStm FIX Hholds trivially sine g0 s = undef for all states s. For the indution step we assumethat Gn g0 satStm FIX Hand we shall prove the result for n+1. We haveB[[b℄℄ satBexp PB[[b℄℄from Exerise 5.30,Sds[[S ℄℄ satStm PS[[S ℄℄from the indution hypothesis applied to the body of the while-loop, and it islear thatid satStm idBy Exerise 5.27 we also haveps on-trak vP ((FIX H) ps) on-trakfor all property states ps. We then obtainond(B[[b℄℄, (Gn g0)ÆSds[[S ℄℄, id) satStm ondP(PB[[b℄℄, (FIX H)ÆPS[[S ℄℄, id)from Lemmas 5.32 and 5.33 and this is indeed the desired result sine the right-hand side amounts to H (FIX H) whih equals FIX H .Finally we must show (**). This amounts to showingFY satStm FIX H

5.3 Safety of the analysis 159where Y = f Gn g0 j n � 0 g. So assume thats1 � s2 rel ps and (FIX H) ps is properSine g satStm FIX H holds for all g 2 Y by (*) we get that eitherg s1 = undef and g s2 = undef, org s1 6= undef and g s2 6= undef and g s1 � g s2 rel (FIX H) psIf (FY) s1 = undef then g s1 = undef for all g 2 Y and thereby g s2 = undef forall g 2 Y so that (FY) s2 = undef. Similarly (FY) s2 = undef will imply that(FY) s1 = undef. So onsider now the ase where (FY) s1 6= undef as well as(FY) s2 6= undef and let x 2 Var \ OK((FIX H) ps). By Lemma 4.25 we havegraph(FY) = Sf graph g j g 2 Y gand (FY) s i 6= undef therefore shows the existene of an element g i in Y suhthat g i s i 6= undef and (FY) s i = g i s i (for i = 1, 2). Sine Y is a hain eitherg1 v g2 or g2 v g1 so let g be the larger of the two. We then have((FY) s1) x = (g1 s1) x as (FY) s1 = g1 s1= (g s1) x as g1 v g and g1 s1 6= undef= (g s2) x as g s1 � g s2 rel (FIX H) ps= (g2 s2) x as g2 v g and g2 s2 6= undef= ((FY) s2) x as (FY) s2 = g2 s2as required. This �nishes the proof of the theorem. 2It follows from this theorem that the algorithm listed at the end of Setion 5.2is indeed orret. The proof of safety of the analysis an be summarized as follows:Proof Summary for While:Safety of Stati Analysis1: De�ne a relation satStm expressing the relationship between the funtionsof State ,! State and PState ! PState.2: Show that the relation is preserved by ertain pairs of auxiliary funtionsused in the denotational semantis and the stati analysis (Lemmas 5.32and 5.33).3: Use strutural indution on the statements S to show that the relationholds between the semantis and the analysis of S .

160 5 Stati Program AnalysisExerise 5.34 Extend the proof of the theorem to inorporate the analysis de-veloped for repeat S until b in Exerise 5.25. 2Exerise 5.35 When speifying PS in the previous setion we rejeted the pos-sibility of usingond0P(f , h1, h2) ps = (h1 ps) tPS (h2 ps)rather than ondP. Formally show that the analysis obtained by using ond0P ratherthan ondP annot be orret in the sense of Theorem 5.31. Hint: Consider thestatement S 12 of Example 5.3. 2Exerise 5.36 In the above exerise we saw that ondP ould not be simpli�edso as to ignore the test for whether the ondition is dubious or not. Now onsiderthe following remedyond0P(f , h1, h2) ps= 8>>><>>>: (h1 ps) tPS (h2 ps) if f ps = ok((h1 (ps[on-trak7!d?℄)) tPS (h2 (ps[on-trak7!d?℄)))[on-trak7!ok℄if f ps = d?Give an example statement where ond0P is preferable to ondP. Does the safetyproof arry through when ondP is replaed by ond0P? If not, suggest how toweaken the safety prediate suh that another safety result may be proved. 25.4 Bounded iterationIn Example 5.16 we analysed the fatorial statement and saw that the �xed pointomputation stabilizes after a �nite number of unfoldings, irrespetive of the prop-erty state that is supplied as argument. This is quite unlike what was the ase forthe denotational semantis of Chapter 4, where the number of unfoldings dependedon the state and was unbounded. A similar example was studied in Exerise 5.24where we saw that the analysis would terminate upon a statement that neverterminated in the denotational semantis of Chapter 4.This is an instane of a general phenomenon and we shall show two propositionsabout this. The �rst proposition says that for eah statement while b do S thereis a onstant k suh that the kth unfolding will indeed be the �xed point. Theseond proposition is onsiderably harder and says that it is possible to take k tobe (m+1)2 where m is the number of distint variables in while b do S .To prepare for the �rst proposition we need an indutive de�nition of the setFV(S) of free variables in the statement S :

5.4 Bounded iteration 161FV(x := a) = FV(a) [fxgFV(skip) = ;FV(S 1;S 2) = FV(S 1) [FV(S 2)FV(if b then S 1 else S 2) = FV(b) [FV(S 1) [FV(S 2)FV(while b do S) = FV(b) [FV(S)Our �rst observation is that we an repeat the development of the previous setionsif we restrit the property states to onsider only variables that are free in theoverall program. So let X � Var be a �nite set of variables and de�ne PStateXto be PStateX = (X [fon-trakg) ! PExerise 5.37 (Essential) De�ne AexpX to be the set of arithmeti expressionsa ofAexp with FV(a)� X and letBexpX and StmX be de�ned similarly. ModifyTables 5.1 and 5.2 to de�ne analysis funtionsPAX : AexpX ! PStateX ! PPBX : BexpX ! PStateX ! PPSX : StmX ! PStateX ! PStateX 2The onnetion between the analysis funtions of the above exerise and thoseof Tables 5.1 and 5.2 should be intuitively lear. Formally the onnetion may beworked out as follows:Exerise 5.38 * De�neextendX : PStateX ! PStateby (extendX ps) x = 8<: ps x if x 2 X [fon-trakgps on-trak otherwiseShow thatPA[[a℄℄ Æ extendX = PAX [[a℄℄PB[[b℄℄ Æ extendX = PBX [[b℄℄PS[[S ℄℄ Æ extendX = extendX Æ PSX [[S ℄℄whenever FV(a) � X , FV(b) � X and FV(S) � X . 2The property states of PStateX are only de�ned on a �nite number of argu-ments beause X is a �nite set. This is the key to showing:

162 5 Stati Program Analysis
Proposition 5.39 For eah statement while b do S of While there exists aonstant k suh thatPSX [[while b do S ℄℄ = H k ?where H h = ondP(PBX [[b℄℄, h Æ PSX [[S ℄℄, id) and FV(while b do S) � X .Note that using the result of Exerise 5.38 we ould dispense with X altogether.Proof: Let m be the ardinality of X . Then there will be 2m+1 di�erent propertystates in PStateX . This means that PStateX ! PStateX will ontaink = (2m+1)2m+1di�erent funtions. It follows that there an be at most k di�erent iterands H n ?of H . Sine H is monotone Exerise 5.18 gives that H k ? must be equal to the�xed point FIX H . This onludes the proof of the proposition. 2Making it pratialThe onstant k determined above is a safe upper bound but is rather large evenfor small statements. As an example it says that the 16,777,216th iteration ofthe funtional will suÆe for the fatorial statement and this is quite useless forpratial purposes. In the remainder of this setion we shall show that a muhsmaller onstant an be used:Proposition 5.40 For eah statement while b do S of While we havePSX [[while b do S ℄℄ = H k ?where H h = ondP(PBX [[b℄℄, h Æ PSX [[S ℄℄, id), k = (m+1)2, and m is the ardi-nality of the set X = FV(while b do S).Note that using the result of Exerise 5.38 we ould dispense with X altogether.For the fatorial statement this will imply that FIX H = H 9 ? so only nineiterands need to be onstruted. This may be ompared with the observation madein Example 5.16 that already H 1 ? is the least �xed point.The proof of Proposition 5.40 requires some preliminary results. To motivatethese onsider why the upper bound determined in Proposition 5.39 is so impreise.The reason is that we onsider all funtions in PStateX ! PStateX and do notexploit any speial properties of the funtions H n ?, suh as monotoniity orontinuity. To obtain a better bound we shall exploit properties of the PSX [[S ℄℄analysis funtions. Reall that a funtion

5.4 Bounded iteration 163h: PStateX ! PStateXis strit if and only ifh initX = initXwhere initX is the least element of PStateX . It is an additive funtion if and onlyif h (ps1 tPS ps2) = (h ps1) tPS (h ps2)holds for all property states ps1 and ps2 of PStateX .Exerise 5.41 (Essential) Give a formal de�nition of what it means for a fun-tion h: PStateX ! Pto be strit and additive. Use Exerise 5.11 to show that PAX [[a℄℄ and PBX [[b℄℄are strit and additive. (We taitly assume that FV(a) � X and FV(b) � X .) 2We shall �rst show that the auxiliary funtions for omposition and onditionalpreserve stritness and additivity and next we shall prove that the analysis funtionPSX [[S ℄℄ is strit and additive for all statements S .Exerise 5.42 (Essential) Show that if h1 and h2 are strit and additive fun-tions in PStateX ! PStateX then so is h1 Æ h2. 2Exerise 5.43 (Essential) Assume that f inPStateX !P is strit and additiveand that h1 and h2 in PStateX ! PStateX are strit and additive. Show thatondP(f , h1, h2) is a strit and additive funtion. Hint: if f (ps1 tPS ps2) = d?then f ps i = d? for i = 1 or i = 2. 2Lemma 5.44 For all statements S of While, PSX [[S ℄℄ is a strit and additivefuntion whenever FV(S) � X .Proof: We proeed by strutural indution on S and assume that FV(S) � X .The ase x := a: We havePSX [[x := a℄℄ initX = initXbeause Exerise 5.41 gives that PAX [[a℄℄ is strit so PAX [[a℄℄ initX = ok. Nextwe show that PSX [[x := a℄℄ is additive:

164 5 Stati Program AnalysisPSX [[x := a℄℄(ps1 tPS ps2)= (ps1 tPS ps2)[x 7! PAX [[a℄℄(ps1 tPS ps2)℄= (ps1 tPS ps2)[x 7! PAX [[a℄℄ps1 tP PAX [[a℄℄ps2℄= ps1[x 7!PAX [[a℄℄ps1℄ tPS ps2[x 7!PAX [[a℄℄ps2℄= PSX [[x := a℄℄ps1 tPS PSX [[x := a℄℄ps2where the seond equality follows from PAX [[a℄℄ being additive (Exerise 5.41).The ase skip is immediate.The ase S 1; S 2 follows from Exerise 5.42 and the indution hypothesis appliedto S 1 and S 2.The ase if b then S 1 else S 2 follows from Exerise 5.43, the indution hypoth-esis applied to S 1 and S 2 and Exerise 5.41.The ase while b do S : De�neH h = ondP(PBX [[b℄℄, h Æ PSX [[S ℄℄, id)Our �rst laim is thatH n ?is strit and additive for all n. This is proved by numerial indution and thebase ase, n = 0, is immediate. The indution step follows from the indutionhypothesis of the strutural indution, the indution hypothesis of the numerialindution, Exerises 5.42, 5.41 and 5.43 and that id is strit and additive. Ourseond laim is thatFIX H = FPS f H n ? j n � 0 gis strit and additive. For stritness we alulate(FIX H) initX = FPS f (H n ?) initX j n � 0 g= initXwhere the last equality follows from H n ? being strit for all n. For additivity wealulate(FIX H)(ps1 tPS ps2)= FPS f (H n ?)(ps1 tPS ps2) j n � 0 g= FPS f (H n ?)ps1 tPS (H n ?)ps2 j n � 0 g= FPS f (H n ?)ps1 j n � 0 g tPS FPS f (H n ?)ps2 j n � 0 g= (FIX H)ps1 tPS (FIX H)ps2

5.4 Bounded iteration 165The seond equality uses the additivity of H n ? for all n. This onludes the proofof the lemma. 2Strit and additive funtions have a number of interesting properties:Exerise 5.45 (Essential) Show that if h: PStateX ! PStateX is additivethen h is monotone. 2The next result expresses that when two distint analysis funtions h1 and h2are strit and additive and satis�es h1 v h2 then it will be the property assignedto just one of the \variables" that aounts for the di�erene between h1 and h2.Lemma 5.46 Consider strit and additive funtionsh1, h2: PStateX ! PStateXsuh that h1 v h2 and h1 6= h2. Then there exist \variables" x , y 2 X [fon-trakgsuh that(h1 (initX [y 7!d?℄)) x = ok but(h2 (initX [y 7!d?℄)) x = d?Proof: Sine h1 v h2 and h1 6= h2 there exists a property state ps suh thath1 ps vPS h2 psh1 ps 6= h2 psIt follows that there exists a \variable" x 2 X [fon-trakg suh that(h1 ps) x = ok(h2 ps) x = d?Consider now the set OK(ps). It is �nite beause OK(ps) � X [fon-trakg. Firstassume that OK(ps) = X [fon-trakg. Then ps = initX and sine we know thath1 and h2 are strit we have h1 initX = initX and h2 initX = initX . Thereforeh1 ps = h2 ps whih ontradits the way ps was hosen.Therefore OK(ps) is a true subset of X [fon-trakg. Now let fy1, � � �, yng bethe \variables" of X [fon-trakg that do not our in OK(ps). This means thatps = initX [y1 7!d?℄� � �[yn 7!d?℄whih is equivalent tops = initX [y1 7!d?℄ tPS � � � tPS initX [yn 7!d?℄

166 5 Stati Program AnalysisSine h2 is additive we haveh2 ps = h2(initX [y1 7!d?℄) tPS � � � tPS h2(initX [yn 7!d?℄)We have assumed that (h2 ps) x = d? and now it follows that for some i (1�i�n)h2(initX [y i 7!d?℄) x = d?Sine initX [y i 7!d?℄ vPS ps and h1 is monotone (Exerise 5.45) we get thath1 (initX [y i 7!d?℄) vPS h1 psand therebyh1 (initX [y i 7!d?℄) x = okSo the lemma follows by taking y to be y i. 2The next step will be to generalize this result to sequenes of strit and additivefuntions.Corollary 5.47 Consider a sequeneh0 v h1 v � � � v hnof strit and additive funtionsh i: PStateX ! PStateXthat are all distint, that is h i 6= h j if i 6= j. Then n � (m+1)2 where m is theardinality of X .Proof: For eah i 2 f0,1,� � �,n�1g the previous lemma applied to h i and h i+1 givesthat there are \variables"x i, y i 2 X [fon-trakgsuh thath i(initX [y i 7!d?℄) x i = okh i+1(initX [y i 7!d?℄) x i = d?First assume that all (x i, y i) are distint. Sine the ardinality of X is m therean be at most (m+1)2 suh pairs and we have shown n � (m+1)2.Next assume that there exists i < j suh that (x i, y i) = (x j, y j). We then haveh i+1(initX [y i 7!d?℄) x i = d?

5.4 Bounded iteration 167and h j(initX [y i 7!d?℄) x i = okSine i+1 � j we have h i+1 v h j and thereforeh i+1 (initX [y i 7!d?℄) x i vP h j (initX [y i 7!d?℄) x iThis is a ontradition as it is not the ase that d? vP ok. Thus it annot be thease that some of the pairs (x i, y i) obtained from Lemma 5.46 oinide and wehave proved the orollary. 2We shall now turn towards the proof of the main result:Proof of Proposition 5.40. Consider the onstrut while b do S and let H begiven byH h = ondP(PBX [[b℄℄, h Æ PSX [[S ℄℄, id)We shall then prove thatPSX [[while b do S ℄℄ = H k ?where k = (m+1)2 and m is the ardinality of X = FV(while b do S). To do thatonsider the sequeneH 0 ? v H 1 ? v � � � v H k ? v H k+1 ?It follows from Lemma 5.44 that eah H i ? is a strit and additive funtion. Itnow follows from Corollary 5.47 that not all H i ?, for i � k+1, are distint. If i<jsatis�esH i ? = H j ?then we also haveH i ? = H n ? for n�iand in partiularH k ? = H k+1 ?Hene FIX H = H k ? as desired beause of Exerise 5.18. 2Exerise 5.48 * Show that the bound exhibited in Corollary 5.47 is tight. Thatis desribe how to onstrut a sequeneh0 v h1 v � � � v hn

168 5 Stati Program Analysisof strit and additive funtions h i: PStateX ! PStateX suh that all h i are dis-tint and n = (m+1)2 where m is the ardinality of X . Hint: Begin by onsideringm = 0, m = 1, m = 2 and then try to generalize. 2To summarize, the quadrati upper bound on the required number of iterandsis obtained as follows: Proof Summary for While:Bounding the Number of Iterations in the Stati Analysis1: The analysis is modi�ed to use the set PStateX rather than PState(Exerise 5.37).2: A proof by strutural indution on the statements shows that the analysisfuntions PSX [[S ℄℄ are strit and additive (Lemma 5.44).3: Sequenes of strit and additive funtions in PStateX ! PStateX anhave length at most (m+1)2 where m is the ardinality of X (Corollary5.47).Using the result of Proposition 5.40 we get that at most 9 iterations are needed toompute the �xed point present in the analysis of the fatorial statement. Sine weknow that already the �rst iterand will equal the �xed point one may ask whetherone an obtain an even better bound on the number of iterations. The followingexerise shows that the quadrati upper bound an be replaed by a linear upperbound:Exerise 5.49 ** Show that for eah statement while b do S of While we havePSX [[while b do S ℄℄ = H k ?where H h = ondP(PBX [[b℄℄, hÆPSX [[S ℄℄, id), k = m+1, and m is the ardinalityof the set X = FV(while b do S). 2For the fatorial statement this result will give that at most 3 iterations areneeded to determine the �xed point. The next exerise shows that this is almostthe best upper bound we an hope for:Exerise 5.50 * Show that for eah m � 1 there is a statement while b do S ofWhile suh thatPSX [[while b do S ℄℄ 6= H k ?where H h = ondP(PBX [[b℄℄, hÆPSX [[S ℄℄, id), k = m�1, and m is the ardinalityof the set X = FV(while b do S). 2

Chapter 6Axiomati Program Veri�ationThe kinds of semantis we have seen so far speify the meaning of programs al-though they may also be used to prove that given programs possess ertain proper-ties. We may distinguish between several lasses of properties: partial orretnessproperties are properties expressing that if a given program terminates then therewill be a ertain relationship between the initial and the �nal values of the vari-ables. Thus a partial orretness property of a program need not ensure that itterminates. This is ontrary to total orretness properties whih express that theprogram will terminate and that there will be a ertain relationship between theinitial and the �nal values of the variables. Thus we havepartial orretness + termination = total orretnessYet another lass of properties is onerned with the resoures used when exeutingthe program. An example is the time used to exeute the program on a partiularmahine.6.1 Diret proofs of program orretnessIn this setion we shall give some examples that prove partial orretness of state-ments based diretly on the operational and denotational semantis. We shallprove that the fatorial statementy := 1; while :(x=1) do (y := y?x; x := x�1)is partially orret, that is if the statement terminates then the �nal value of ywill be the fatorial of the initial value of x.Natural semantisUsing natural semantis the partial orretness of the fatorial statement an beformalized as follows: 169

170 6 Axiomati Program Veri�ationFor all states s and s 0, ifhy := 1; while :(x=1) do (y := y?x; x := x�1), si ! s 0then s 0 y = (s x)! and s x > 0This is indeed a partial orretness property beause the statement does not ter-minate if the initial value s x of x is non-positive.The proof proeeds in three stages:Stage 1: We prove that the body of the while loop satis�es:if hy := y?x; x := x�1, si ! s 00 and s 00 x > 0then (s y) ? (s x)! = (s 00 y) ? (s 00 x)! and s x > 0 (*)Stage 2: We prove that the while loop satis�es:if hwhile :(x=1) do (y := y?x; x := x�1), si ! s 00then (s y) ? (s x)! = s 00 y and s 00 x = 1 and s x > 0 (**)Stage 3: We prove the partial orretness property for the omplete program:if hy := 1; while :(x=1) do (y := y?x; x := x�1), si ! s 0then s 0 y = (s x)! and s x > 0 (***)In eah of the three stages the derivation tree of the given transition is inspetedin order to prove the property.In the �rst stage we onsider the transitionhy := y?x; x := x�1, si ! s 00Aording to [ompns℄ there will be transitionshy := y?x, si ! s 0 and hx := x�1, s 0i ! s 00for some s 0. From the axiom [assns℄ we then get that s 0 = s[y7!A[[y?x℄℄s℄ and thats 00 = s 0[x7!A[[x�1℄℄s 0℄. Combining these results we haves 00 = s[y7!(s y)?(s x)℄[x7!(s x)�1℄Assuming that s 00 x > 0 we an then alulate(s 00 y) ? (s 00 x)! = ((s y) ? (s x)) ? ((s x)�1)! = (s y) ? (s x)!and sine s x = (s 00 x) + 1 this shows that (*) does indeed hold.In the seond stage we proeed by indution on the shape of the derivation treefor hwhile :(x=1) do (y := y?x; x := x�1), si ! s 0

6.1 Diret proofs of program orretness 171One of two axioms and rules ould have been used to onstrut this derivation.If [while�ns℄ has been used then s 0 = s and B[[:(x=1)℄℄s = �. This means thats 0 x = 1 and sine 1! = 1 we get the required (s y) ? (s x)! = s y and s x > 0.This proves (**).Next assume that [whilettns℄ is used to onstrut the derivation. Then it mustbe the ase that B[[:(x=1)℄℄s = tt andhy := y?x; x := x�1, si ! s 00and hwhile :(x=1) do (y := y?x; x := x�1), s 00i ! s 0for some state s 00. The indution hypothesis applied to the latter derivation givesthat (s 00 y) ? (s 00 x)! = s 0 y and s 0 x = 1 and s 00 x > 0From (*) we get that(s y) ? (s x)! = (s 00 y) ? (s 00 x)! and s x > 0Putting these results together we get(s y) ? (s x)! = s 0 y and s 0 x = 1 and s x > 0This proves (**) and thereby the seond stage of the proof is ompleted.Finally, onsider the third stage of the proof and the derivationhy := 1; while :(x=1) do (y := y?x; x := x�1), si ! s 0Aording to [ompns℄ there will be a state s 00 suh thathy := 1, si ! s 00and hwhile :(x=1) do (y := y?x; x := x�1), s 00i ! s 0From axiom [assns℄ we see that s 00 = s[y7!1℄ and from (**) we get that s 00 x > 0and therefore s x > 0. Hene (s x)! = (s 00 y) ? (s 00 x)! holds and using (**) we get(s x)! = (s 00 y) ? (s 00 x)! = s 0 yas required. This proves the partial orretness of the fatorial statement.Exerise 6.1 Use the natural semantis to prove the partial orretness of thestatement

172 6 Axiomati Program Veri�ationz := 0; while y�x do (z := z+1; x := x�y)that is prove that if the statement terminates in s 0 when exeuted from a state swith s x > 0 and s y > 0, then s 0 z = (s x) div (s y) and s 0 x = (s x) mod (s y)where div is integer division and mod is the modulo operation. 2Exerise 6.2 Use the natural semantis to prove the following total orretnessproperty for the fatorial program: for all states sif s x > 0 then there exists a state s 0 suh thathy := 1; while :(x=1) do (y := y?x; x := x�1), si ! s 0and s 0 y = (s x)! 2Strutural operational semantisThe partial orretness of the fatorial statement an also be established using thestrutural operational semantis. The property is then reformulated as:For all states s and s 0, ifhy := 1; while :(x=1) do (y := y?x; x := x�1), si)� s 0then s 0 y = (s x)! and s x > 0Again it is worthwhile to approah the proof in stages:Stage 1: We prove by indution on the length of derivation sequenes thatif hwhile :(x=1) do (y := y?x; x := x�1), si)k s 0then s 0 y = (s y) ? (s x)! and s 0 x = 1 and s x > 0Stage 2: We prove thatif hy := 1; while :(x=1) do (y := y?x; x := x�1), si)� s 0then s 0 y = (s x)! and s x > 0Exerise 6.3 Complete the proof of stages 1 and 2. 2Denotational semantisWe shall now use the denotational semantis to prove partial orretness propertiesof statements. The idea is to formulate the property as a prediate on the po(State ,! State, v), that is : (State ,! State) ! T

6.1 Diret proofs of program orretness 173As an example, the partial orretness of the fatorial statement will be writtenas fa(Sds[[y := 1; while :(x=1) do (y := y?x; x := x�1)℄℄) = ttwhere the prediate fa is de�ned by fa(g) = ttif and only iffor all states s and s 0, if g s = s 0 then s 0 y = (s x)! and s x > 0A prediate : D ! T de�ned on a po (D ,v) is alled an admissible prediateif and only if we haveif d = tt for all d 2 Y then (FY) = ttfor every hain Y in D . Thus if holds on all the elements of the hain then italso holds on the least upper bound of the hain.Example 6.4 Consider the prediate 0fa de�ned on State ,! State by 0fa(g) = ttif and only iffor all states s and s 0, if g s = s 0then s 0 y = (s y) ? (s x)! and s x > 0Then 0fa is an admissible prediate. To see this assume that Y is a hain inState ,! State and assume that 0fa g = tt for all g 2 Y . We shall then provethat 0fa(FY) = tt, that is(FY) s = s 0impliess 0 y = (s y) ? (s x)! and s x > 0From Lemma 4.25 we have graph(FY) = Sf graph(g) j g 2 Y g. We have assumedthat (FY) s = s 0 so Y annot be empty and hs, s 0i 2 graph(g) for some g 2 Y .But thens 0 y = (s y) ? (s x)! and s x > 0as 0fa g = tt for all g 2 Y . This proves that 0fa is an admissible prediate. 2For admissible prediates we have the following indution priniple alled �xedpoint indution:

174 6 Axiomati Program Veri�ation
Theorem 6.5 Let (D ,v) be a po and let f : D ! D be a ontinuous funtionand let be an admissible prediate on D . If for all d 2 D d = tt implies (f d) = ttthen (FIX f) = tt.Proof: We shall �rst note that ? = ttholds by admissibility of (applied to the hain Y = ;). By indution on n wean then show that (f n ?) = ttusing the assumptions of the theorem. By admissibility of (applied to the hainY = f f n ? j n � 0 g) we then have (FIX f) = ttThis ompletes the proof. 2We are now in a position where we an prove the partial orretness of thefatorial statement. The �rst observation is thatSds[[y := 1; while :(x=1) do (y := y?x; x := x�1)℄℄s = s 0if and only ifSds[[while :(x=1) do (y := y?x; x := x�1)℄℄(s[y7!1℄) = s 0Thus it is suÆient to prove that 0fa(Sds[[while :(x=1) do (y := y?x; x := x�1)℄℄) = tt (*)(where 0fa is de�ned in Example 6.4) as this will imply that fa(Sds[[y := 1; while :(x=1) do (y := y?x; x := x�1)℄℄) = ttWe shall now reformulate (*) slightly to bring ourselves in a position where wean use �xed point indution. Using the de�nition of Sds in Table 4.1 we haveSds[[while :(x=1) do (y := y?x; x := x�1)℄℄ = FIX Fwhere the funtional F is de�ned byF g = ond(B[[:(x=1)℄℄, g Æ Sds[[y := y?x; x := x�1℄℄, id)

6.2 Partial orretness assertions 175Using the semanti equations de�ning Sds we an rewrite this de�nition as(F g) s = 8<: s if s x = 1g(s[y7!(s y)?(s x)℄[x7!(s x)�1℄) otherwiseWe have already seen that F is a ontinuous funtion (for example in the proofof Proposition 4.47) and from Example 6.4 we have that 0fa is an admissibleprediate. Thus we see from Theorem 6.5 that (*) follows if we show that 0fa g = tt implies 0fa(F g) = ttTo prove this impliation assume that 0fa g = tt, that is for all states s and s 0if g s = s 0 then s 0 y = (s y) ? (s x)! and s x > 0We shall prove that 0fa(F g) = tt, that is for all states s and s 0if (F g) s = s 0 then s 0 y = (s y) ? (s x)! and s x > 0Inspeting the de�nition of F we see that there are two ases. First assume thats x = 1. Then (F g) s = s and learly s y = (s y) ? (s x)! and s x > 0. Nextassume that s x 6= 1. Then(F g) s = g(s[y7!(s y)?(s x)℄[x7!(s x)�1℄)From the assumptions about g we then get thats 0 y = ((s y)?(s x)) ? ((s x)�1)! and (s x)�1 > 0so that the desired results 0 y = (s y) ? (s x)! and s x > 0follows.Exerise 6.6 Repeat Exerise 6.1 using the denotational semantis. 26.2 Partial orretness assertionsOne may argue that the above proofs are too detailed to be pratially useful; thereason is that they are too losely onneted with the semantis of the program-ming language. One may therefore want to apture the essential properties of thevarious onstruts so that it would be less demanding to ondut proofs aboutgiven programs. Of ourse the hoie of \essential properties" will determine thesort of properties that we may aomplish proving. In this setion we shall beinterested in partial orretness properties and therefore the \essential properties"of the various onstruts will not inlude termination.The idea is to speify properties of programs as assertions, or laims, aboutthem. An assertion is a triple of the form

176 6 Axiomati Program Veri�ationf P g S f Q gwhere S is a statement and P and Q are prediates. Here P is alled the preondi-tion and Q is alled the postondition. Intuitively, the meaning of f P g S f Q gis thatif P holds in the initial state, andif the exeution of S terminates when started in that state,then Q will hold in the state in whih S haltsNote that for f P g S f Q g to hold we do not require that S halts when startedin states satisfying P | merely that if it does halt then Q holds in the �nal state.Logial variablesAs an example we may writef x=n g y := 1; while :(x=1) do (y := x?y; x := x�1) f y=n! ^ n>0 gto express that if the value of x is equal to the value of n before the fatorialprogram is exeuted then the value of y will be equal to the fatorial of the valueof n after the exeution of the program has terminated (if indeed it terminates).Here n is a speial variable alled a logial variable and these logial variablesmust not appear in any statement onsidered. The role of these variables is to\remember" the initial values of the program variables. Note that if we replaethe postondition y=n! ^ n>0 by the new postondition y=x! ^ x>0 then theassertion above will express a relationship between the �nal value of y and the�nal value of x and this is not what we want. The use of logial variables solvesthe problem beause it allows us to refer to initial values of variables.We shall thus distinguish between two kinds of variables:� program variables, and� logial variables.The states will determine the values of both kinds of variables and sine logialvariables do not our in programs their values will always be the same. In aseof the fatorial program we know that the value of n is the same in the initialstate and in the �nal state. The preondition x = n expresses that n has the samevalue as x in the initial state. Sine the program will not hange the value of n thepostondition y = n! will express that the �nal value of y is equal to the fatorialof the initial value of x.

6.2 Partial orretness assertions 177The assertion languageThere are two approahes onerning how to speify the preonditions and post-onditions of the assertions:� the intensional approah, versus� the extensional approah.In the intensional approah the idea is to introdue an expliit language alled anassertion language and then the onditions will be formulae of that language. Thisassertion language is in general muh more powerful than the boolean expressions,Bexp, introdued in Chapter 1. In fat the assertion language has to be verypowerful indeed in order to be able to express all the preonditions and poston-ditions we may be interested in; we shall return to this in the next setion. Theapproah we shall follow is the extensional approah and it is a kind of shortut.The idea is that the onditions are prediates, that is funtions in State ! T.Thus the meaning of f P g S f Q g may be reformulated as saying that if P holdson a state s and if S exeuted from state s results in the state s 0 then Q holds ons 0. We an write any prediates we like and therefore the expressiveness problemmentioned above does not arise.Eah boolean expression b de�nes a prediate B[[b℄℄. We shall feel free to letb inlude logial variables as well as program variables so the preondition x = nused above is an example of a boolean expression. To ease the readability, weintrodue the following notationP1 ^ P2 for P where P s = (P1 s) and (P2 s)P1 _ P2 for P where P s = (P1 s) or (P2 s):P for P 0 where P 0 s = :(P s)P [x 7!A[[a℄℄℄ for P 0 where P 0 s = P (s[x 7!A[[a℄℄s℄)P1) P2 for 8s 2 State: P1 s implies P2 sWhen it is onvenient, but not when de�ning formal inferene rules, we shallallow to dispense with B[[� � �℄℄ and A[[� � �℄℄ inside square brakets as well as withinpreonditions and postonditions.Exerise 6.7 Show that� B[[b[x 7!a℄℄℄ = B[[b℄℄[x 7!A[[a℄℄℄ for all b and a,� B[[b1 ^ b2℄℄ = B[[b1℄℄ ^ B[[b2℄℄ for all b1 and b2, and� B[[:b℄℄ = :B[[b℄℄ for all b. 2

178 6 Axiomati Program Veri�ation[assp℄ f P [x 7!A[[a℄℄℄ g x := a f P g[skipp℄ f P g skip f P g[ompp℄ f P g S 1 f Q g, f Q g S 2 f R gf P g S 1; S 2 f R g[ifp℄ f B[[b℄℄ ^ P g S 1 f Q g, f :B[[b℄℄ ^ P g S 2 f Q gf P g if b then S 1 else S 2 f Q g[whilep℄ f B[[b℄℄ ^ P g S f P gf P g while b do S f :B[[b℄℄ ^ P g[onsp℄ f P 0 g S f Q 0 gf P g S f Q g if P) P 0 and Q 0) QTable 6.1: Axiomati system for partial orretnessThe inferene systemThe partial orretness assertions will be spei�ed by an inferene system onsist-ing of a set of axioms and rules. The formulae of the inferene system have theform f P g S f Q gwhere S is a statement in the language While and P and Q are prediates. Theaxioms and rules are summarized in Table 6.1 and will be explained below. Theinferene system spei�es an axiomati semantis for While.The axiom for assignment statements isf P [x 7!A[[a℄℄℄ g x := a f P gThis axiom assumes that the exeution of x := a starts in a state s that satis�esP [x 7!A[[a℄℄℄, that is in a state s where s[x 7!A[[a℄℄s℄ satis�es P . The axiom expressesthat if the exeution of x := a terminates (whih will always be the ase) then the�nal state will satisfy P . From the earlier de�nitions of the semantis of Whilewe know that the �nal state will be s[x 7!A[[a℄℄s℄ so it is easy to see that the axiomis plausible.For skip the axiom isf P g skip f P gThus if P holds before skip is exeuted then it also holds afterwards. This islearly plausible as skip does nothing.

6.2 Partial orretness assertions 179Axioms [assp℄ and [skipp℄ are really axiom shemes generating separate axiomsfor eah hoie of prediate P . The meaning of the remaining onstruts are givenby rules of inferene rather than axiom shemes. Eah suh rule spei�es a wayof deduing an assertion about a ompound onstrut from assertions about itsonstituents. For omposition the rule is:f P g S 1 f Q g, f Q g S 2 f R gf P g S 1; S 2 f R gThis says that if P holds prior to the exeution of S 1; S 2 and if the exeutionterminates then we an onlude that R holds in the �nal state provided thatthere is a prediate Q for whih we an dedue that� if S 1 is exeuted from a state where P holds and if it terminates then Q willhold for the �nal state, and that� if S 2 is exeuted from a state where Q holds and if it terminates then R willhold for the �nal state.The rule for the onditional isf B[[b℄℄ ^ P g S 1 f Q g, f :B[[b℄℄ ^ P g S 2 f Q gf P g if b then S 1 else S 2 f Q gThe rule says that if if b then S 1 else S 2 is exeuted from a state where P holdsand if it terminates, then Q will hold for the �nal state provided that we andedue that� if S 1 is exeuted from a state where P and b hold and if it terminates thenQ holds on the �nal state, and that� if S 2 is exeuted from a state where P and :b hold and if it terminates thenQ holds on the �nal state.The rule for the iterative statement isf B[[b℄℄ ^ P g S f P gf P g while b do S f :B[[b℄℄ ^ P gThe prediate P is alled an invariant for the while-loop and the idea is that itwill hold before and after eah exeution of the body S of the loop. The rule saysthat if additionally b is true before eah exeution of the body of the loop then :bwill be true when the exeution of the while-loop has terminated.To omplete the inferene system we need one more rule of inferenef P 0 g S f Q 0 gf P g S f Q g if P) P 0 and Q 0) Q

180 6 Axiomati Program Veri�ationThis rule says that we an strengthen the preondition P 0 and weaken the post-ondition Q 0. This rule is often alled the rule of onsequene.Note that Table 6.1 spei�es a set of axioms and rules just as the tables de�ningthe operational semantis in Chapter 2. The analogue of a derivation tree will nowbe alled an inferene tree sine it shows how to infer that a ertain property holds.Thus the leaves of an inferene tree will be instanes of axioms and the internalnodes will orrespond to instanes of rules. We shall say that the inferene treegives a proof of the property expressed by its root. We shall write`p f P g S f Q gfor the provability of the assertion f P g S f Q g. An inferene tree is alledsimple if it is an instane of one of the axioms and otherwise it is alled omposite.Example 6.8 Consider the statement while true do skip. From [skipp℄ we have(omitting the B[[� � �℄℄)`p f true g skip f true gSine (true ^ true)) true we an apply the rule of onsequene [onsp℄ and get`p f true ^ true g skip f true gHene by the rule [whilep℄ we get`p f true g while true do skip f :true ^ true gWe have that :true ^ true) true so by applying [onsp℄ one more we get`p f true g while true do skip f true gThe inferene above an be summarized by the following inferene tree:f true g skip f true gf true ^ true g skip f true gf true g while true do skip f :true ^ true gf true g while true do skip f true gIt is now easy to see that we annot laim that f P g S f Q g means that Swill terminate in a state satisfying Q when it is started in a state satisfying P .For the assertion f true g while true do skip f true g this reading would meanthat the program would always terminate and learly this is not the ase. 2

6.2 Partial orretness assertions 181Example 6.9 To illustrate the use of the axiomati semantis for veri�ation weshall prove the assertionf x = n gy := 1; while :(x=1) do (y := y?x; x := x�1)f y = n! ^ n > 0 gwhere, for the sake of readability, we write y = n! ^ n > 0 for the prediateP where P s = (s y = (s n)! ^ s n > 0)The inferene of this assertion proeeds in a number of stages. First we de�ne theprediate INV that is going to be the invariant of the while-loop:INV s = (s x > 0 implies ((s y) ? (s x)! = (s n)! and s n � s x))We shall then onsider the body of the loop. Using [assp℄ we get`p f INV [x7!x�1℄ g x := x�1 f INV gSimilarly, we get`p f (INV [x7!x�1℄)[y7!y?x℄ g y := y ? x f INV [x7!x�1℄ gWe an now apply the rule [ompp℄ to the two assertions above and get`p f (INV [x7!x�1℄)[y7!y?x℄ g y := y ? x; x := x�1 f INV gIt is easy to verify that(:(x=1) ^ INV)) (INV [x7!x�1℄)[y7!y?x℄so using the rule [onsp℄ we get`p f :(x = 1) ^ INV g y := y ? x; x := x�1 f INV gWe are now in a position to use the rule [whilep℄ and get`p f INV gwhile :(x=1) do (y := y?x; x := x�1)f:(:(x = 1)) ^ INV gClearly we have:(:(x = 1)) ^ INV) y = n! ^ n > 0

182 6 Axiomati Program Veri�ationso applying rule [onsp℄ we get`p f INV g while :(x=1) do (y := y?x; x := x�1) f y = n! ^ n > 0 gWe shall now apply the axiom [assp℄ to the statement y := 1 and get`p f INV [y7!1℄ g y := 1 f INV gUsing thatx = n) INV [y7!1℄together with [onsp℄ we get`p f x = n g y := 1 f INV gFinally, we an use the rule [ompp℄ and get`p f x = n gy := 1; while :(x=1) do (y := y?x; x := x�1)f y = n! ^ n > 0 gas required. 2Exerise 6.10 Speify a formula expressing the partial orretness property ofthe program of Exerise 6.1. Construt an inferene tree giving a proof of thisproperty using the inferene system of Table 6.1. 2Exerise 6.11 Suggest an inferene rule for repeat S until b. You are notallowed to rely on the existene of a while-onstrut in the language. 2Exerise 6.12 Suggest an inferene rule for for x := a1 to a2 do S . You are notallowed to rely on the existene of a while-onstrut in the language. 2Properties of the semantisIn the operational and denotational semantis we de�ned a notion of two programsbeing semantially equivalent. We an de�ne a similar notion for the axiomatisemantis: Two programs S 1 and S 2 are provably equivalent aording to theaxiomati semantis of Table 6.1 if for all preonditions P and postonditions Qwe havèp f P g S 1 f Q g if and only if `p f P g S 2 f Q gExerise 6.13 Show that the following statements of While are provably equiv-alent in the above sense:

6.3 Soundness and ompleteness 183� S ; skip and S� S 1; (S 2; S 3) and (S 1; S 2); S 3 2Proofs of properties of the axiomati semantis will often proeed by indutionon the shape of the inferene tree:Indution on the Shape of Inferene Trees1: Prove that the property holds for all the simple inferene trees by showingthat it holds for the axioms of the inferene system.2: Prove that the property holds for all omposite inferene trees: For eahrule assume that the property holds for its premises (this is alled theindution hypothesis) and that the onditions of the rule are satis�ed andthen prove that it also holds for the onlusion of the rule.Exerise 6.14 ** Using the inferene rule for repeat S until b given in Exerise6.11 show that repeat S until b is provably equivalent to S ; while :b do S . Hint:it is not too hard to show that what is provable about repeat S until b is alsoprovable about S ; while :b do S . 2Exerise 6.15 Show that `p f P g S f true g for all statements S and propertiesP . 26.3 Soundness and ompletenessWe shall now address the relationship between the inferene system of Table 6.1and the operational and denotational semantis of the previous hapters. We shallprove that� the inferene system is sound: if some partial orretness property an beproved using the inferene system then it does indeed hold aording to thesemantis, and� the inferene system is omplete: if some partial orretness property doeshold aording to the semantis then we an also �nd a proof for it using theinferene system.The ompleteness result an only be proved beause we use the extensional ap-proah where preonditions and postonditions are arbitrary prediates. In theintensional approah we only have a weaker result; we shall return to this later inthis setion.

184 6 Axiomati Program Veri�ationAs the operational and denotational semantis are equivalent we only need toonsider one of them here and we shall hoose the natural semantis. The partialorretness assertion f P g S f Q g is said to be valid if and only iffor all states s, if P s = tt and hS ,si ! s 0 for some s 0 then Q s 0 = ttand we shall write this asj=p f P g S f Q gThe soundness property is then expressed by`p f P g S f Q g implies j=p f P g S f Q gand the ompleteness property is expressed byj=p f P g S f Q g implies `p f P g S f Q gWe haveTheorem 6.16 For all partial orretness assertions f P g S f Q g we havej=p f P g S f Q g if and only if `p f P g S f Q gIt is ustomary to prove the soundness and ompleteness results separately.SoundnessWe shall �rst prove:Lemma 6.17 The inferene system of Table 6.1 is sound, that is for every partialorretness formula f P g S f Q g we have`p f P g S f Q g implies j=p f P g S f Q gProof: The proof is by indution on the shape of the inferene tree used to infer`p f P g S f Q g. This amounts to nothing but a formalization of the intuitionswe gave when introduing the axioms and rules.The ase [assp℄: We shall prove that the axiom is valid, so suppose thathx := a, si ! s 0

6.3 Soundness and ompleteness 185and (P [x 7!A[[a℄℄℄) s = tt. We shall then prove that P s 0 = tt. From [assns℄ we getthat s 0 = s[x 7!A[[a℄℄s℄ and from (P [x 7!A[[a℄℄℄) s = tt we get that P (s[x 7!A[[a℄℄s℄)= tt. Thus P s 0 = tt as was to be shown.The ase [skipp℄: This ase is immediate using the lause [skipns℄.The ase [ompp℄: We assume thatj=p f P g S 1 f Q g and j=p f Q g S 2 f R gand we have to prove that j=p f P g S 1; S 2 f R g. So onsider arbitrary states sand s 00 suh that P s = tt andhS 1;S 2, si ! s 00From [ompns℄ we get that there is a state s 0 suh thathS 1, si ! s 0 and hS 2, s 0i ! s 00From hS 1, si ! s 0, P s = tt and j=p f P g S 1 f Q g we get Q s 0 = tt. FromhS 2, s 0i ! s 00, Q s 0 = tt and j=p f Q g S 2 f R g it follows that R s 00 = tt as wasto be shown.The ase [ifp℄: Assume thatj=p f B[[b℄℄ ^ P g S 1 f Q g and j=p f :B[[b℄℄ ^ P g S 2 f Q gTo prove j=p f P g if b then S 1 else S 2 f Q g onsider arbitrary states s and s 0suh that P s = tt andhif b then S 1 else S 2, si ! s 0There are two ases. If B[[b℄℄s = tt then we get (B[[b℄℄ ^ P) s = tt and from [ifns℄we havehS 1, si ! s 0From the �rst assumption we therefore get Q s 0 = tt. If B[[b℄℄s = � the resultfollows in a similar way from the seond assumption.The ase [whilep℄: Assume thatj=p f B[[b℄℄ ^ P g S f P gTo prove j=p f P g while b do S f :B[[b℄℄ ^ P g onsider arbitrary states s ands 00 suh that P s = tt andhwhile b do S , si ! s 00

186 6 Axiomati Program Veri�ationand we shall show that (:B[[b℄℄^P) s 00 = tt. We shall now proeed by indution onthe shape of the derivation tree in the natural semantis. One of two ases apply.If B[[b℄℄s = � then s 00 = s aording to [while�ns℄ and learly (:B[[b℄℄ ^ P) s 00 = ttas required. Next onsider the ase where B[[b℄℄s = tt andhS , si ! s 0 and hwhile b do S , s 0i ! s 00for some state s 0. Thus (B[[b℄℄ ^ P) s = tt and we an then apply the assump-tion j=p f B[[b℄℄ ^ P g S f P g and get that P s 0 = tt. The indution hypothe-sis an now be applied to the derivation hwhile b do S , s 0i ! s 00 and gives that(:B[[b℄℄ ^ P) s 00 = tt. This ompletes the proof of this ase.The ase [onsp℄: Suppose thatj=p f P 0 g S f Q 0 g and P) P 0 and Q 0) QTo prove j=p f P g S f Q g onsider states s and s 0 suh that P s = tt andhS , si ! s 0Sine P s = tt and P) P 0 we also have P 0 s = tt and the assumption then givesus that Q 0 s 0 = tt. From Q 0) Q we therefore get Q s 0 = tt as required. 2Exerise 6.18 Show that the inferene rule for repeat S until b suggested inExerise 6.11 preserves validity. Argue that this means that the entire proof systemonsisting of the axioms and rules of Table 6.1 together with the rule of Exerise6.11 is sound. 2Exerise 6.19 De�ne j=0 f P g S f Q g to mean thatfor all states s suh that P s = tt there exists a state s 0 suh thatQ s 0 = tt and hS , si ! s 0Show that it is not the ase that `p f P g S f Q g implies j=0 f P g S f Q g andonlude that the proof system of Table 6.1 annot be sound with respet to thisde�nition of validity. 2Completeness (in the extensional approah)Before turning to the proof of the ompleteness result we shall onsider a speialprediate wlp(S , Q) de�ned for eah statement S and prediate Q :wlp(S , Q) s = ttif and only if for all states s 0,

6.3 Soundness and ompleteness 187if hS , si ! s 0 then Q s 0 = ttThe prediate is alled the weakest liberal preondition for Q and it satis�es:Fat 6.20 For every statement S and prediate Q we have� j=p f wlp(S , Q) g S f Q g (*)� if j=p f P g S f Q g then P) wlp(S , Q) (**)meaning that wlp(S , Q) is the weakest possible preondition for S and Q .Proof: To verify that (*) holds let s and s 0 be states suh that hS , si ! s 0and wlp(S , Q) s = tt. From the de�nition of wlp(S , Q) we get that Q s 0 = ttas required. To verify that (**) holds assume that j=p f P g S f Q g and letP s = tt. If hS , si ! s 0 then Q s 0 = tt (beause j=p f P g S f Q g) so learlywlp(S ,Q) s = tt. 2Exerise 6.21 Prove that the prediate INV of Example 6.9 satis�esINV = wlp(while :(x=1) do (y := y?x; x := x�1), y = n! ^ n > 0) 2Exerise 6.22 Another interesting prediate alled the strongest postonditionfor S and P an be de�ned bysp(P , S) s 0 = ttif and only ifthere exists s suh that hS , si ! s 0 and P s = ttProve that� j=p f P g S f sp(P , S) g� if j=p f P g S f Q g then sp(P , S)) QThus sp(P , S) is the strongest possible postondition for P and S . 2Lemma 6.23 The inferene system of Table 6.1 is omplete, that is for everypartial orretness formula f P g S f Q g we havej=p f P g S f Q g implies `p f P g S f Q g

188 6 Axiomati Program Veri�ationProof: The ompleteness result follows if we an infer`p f wlp(S , Q) g S f Q g (*)for all statements S and prediates Q . To see this suppose thatj=p f P g S f Q gThen Fat 6.20 gives thatP) wlp(S ,Q)so that (*) and [onsp℄ give`p f P g S f Q gas required.To prove (*) we proeed by strutural indution on the statement S .The ase x := a: Based on the natural semantis it is easy to verify thatwlp(x := a, Q) = Q [x 7!A[[a℄℄℄so the result follows diretly from [assp℄.The ase skip: Sine wlp(skip, Q) = Q the result follows from [skipp℄.The ase S 1;S 2: The indution hypothesis applied to S 1 and S 2 gives`p f wlp(S 2, Q) g S 2 f Q gand `p f wlp(S 1, wlp(S 2, Q)) g S 1 f wlp(S 2, Q) gso that [ompp℄ gives`p f wlp(S 1, wlp(S 2, Q)) g S 1;S 2 f Q gWe shall now prove thatwlp(S 1;S 2, Q)) wlp(S 1, wlp(S 2, Q))as then [onsp℄ will give the required proof in the inferene system. So assume thatwlp(S 1;S 2, Q) s = tt and we shall show that wlp(S 1, wlp(S 2, Q)) s = tt. This isobvious unless there is a state s 0 suh that hS 1, si ! s 0 and then we must provethat wlp(S 2, Q) s 0 = tt. However, this is obvious too unless there is a state s 00suh that hS 2, s 0i ! s 00 and then we must prove that Q s 00 = tt. But by [ompns℄we have hS 1;S 2, si ! s 00 so that Q s 00 = tt follows from wlp(S 1;S 2, Q) s = tt.The ase if b then S 1 else S 2: The indution hypothesis applied to S 1 and S 2gives

6.3 Soundness and ompleteness 189`p f wlp(S 1, Q) g S 1 f Q g and `p f wlp(S 2, Q) g S 2 f Q gDe�ne the prediate P byP = (B[[b℄℄ ^ wlp(S 1, Q)) _ (:B[[b℄℄ ^ wlp(S 2, Q))Then we have(B[[b℄℄ ^ P)) wlp(S 1, Q) and (:B[[b℄℄ ^ P)) wlp(S 2, Q)so [onsp℄ an be applied twie and gives`p f B[[b℄℄ ^ P g S 1 f Q g and `p f :B[[b℄℄ ^ P g S 2 f Q gUsing [ifp℄ we therefore get`p f P g if b then S 1 else S 2 f Q gTo see that this is the desired result it suÆes to show thatwlp(if b then S 1 else S 2, Q)) Pand this is straightforward by ases on the value of b.The ase while b do S : De�ne the prediate P byP = wlp(while b do S , Q)We �rst show that(:B[[b℄℄ ^ P)) Q (**)(B[[b℄℄ ^ P)) wlp(S ,P) (***)To verify (**) let s be suh that (:B[[b℄℄ ^ P) s = tt. Then it must be the asethat hwhile b do S , si ! s so we have Q s = tt. To verify (***) let s be suhthat (B[[b℄℄ ^ P) s = tt and we shall show that wlp(S ,P) s = tt. This is obviousunless there is a state s 0 suh that hS , si ! s 0 in whih ase we shall prove thatP s 0 = tt. We have two ases. First we assume that hwhile b do S , s 0i ! s 00 forsome s 00. Then [whilettns℄ gives us that hwhile b do S , si ! s 00 and sine P s =tt we get that Q s 00 = tt using Fat 6.20. But this means that P s 0 = tt as wasrequired. In the seond ase we assume that hwhile b do S , s 0i ! s 00 does nothold for any state s 00. But this means that P s 0 = tt holds vauously and we have�nished the proof of (***).The indution hypothesis applied to the body S of the while-loop gives`p f wlp(S ,P) g S f P gand using (***) together with [onsp℄ we get

190 6 Axiomati Program Veri�ation`p f B[[b℄℄ ^ P g S f P gWe an now apply the rule [whilep℄ and get`p f P g while b do S f :B[[b℄℄ ^ P gFinally, we use (**) together with [onsp℄ and get`p f P g while b do S f Q gas required. 2Exerise 6.24 Prove that the inferene system for the while-language extendedwith repeat S until b as in Exerise 6.11 is omplete. (If not you should improveyour rule for repeat S until b.) 2Exerise 6.25 * Prove the ompleteness of the inferene system of Table 6.1using the strongest postonditions of Exerise 6.22 rather than the weakest liberalpreonditions as used in the proof of Lemma 6.23. 2Exerise 6.26 De�ne a notion of validity based on the denotational semantisof Chapter 4 and prove the soundness of the inferene system of Table 6.1 usingthis de�nition, that is without using the equivalene between the denotationalsemantis and the operational semantis. 2Exerise 6.27 Use the de�nition of validity of Exerise 6.26 and prove the om-pleteness of the inferene system of Table 6.1. 2Expressiveness problems (in the intensional approah)So far we have only onsidered the extensional approah where the preonditionsand postonditions of the formulae are prediates. In the intensional approah theyare formulae of some assertion language L. The axioms and rules of the inferenesystem will be as in Table 6.1, the only di�erene being that the preonditionsand postonditions are formulae of L and that operations suh as P [x 7!A[[a℄℄℄,P1 ^ P2 and P1) P2 are operations on formulae of L.It will be natural to let L inlude the boolean expressions of While. Thesoundness proof of Lemma 6.17 then arries diretly over to the intensional ap-proah. Unfortunately, this is not the ase for the ompleteness proof of Lemma6.23. The reason is that the prediates wlp(S , Q) used as preonditions now haveto be represented as formulae of L and that this may not be possible.To illustrate the problems let S be a statement, for example a universal programin the sense of reursion theory, that has an undeidable Halting problem. Further,suppose that L only ontains the boolean expressions of While. Finally, assumethat there is a formula bS of L suh that for all states s

6.4 Extensions of the axiomati system 191B[[bS℄℄ s = tt if and only if wlp(S , false) s = ttThen also :bS is a formula of L. We haveB[[bS℄℄ s = tt if and only if the omputation of S on s loopsand heneB[[:bS℄℄ s = tt if and only if the omputation of S on s terminatesWe now have a ontradition: the assumptions about S ensure that B[[:bS℄℄ mustbe an undeidable funtion; on the other hand Table 1.2 suggests an obviousalgorithm for evaluating B[[:bS℄℄. Hene our assumption about the existene of bSmust be mistaken. Consequently we annot mimi the proof of Lemma 6.23.The obvious remedy is to extend L to be a muh more powerful language thatallows quanti�ation as well. A entral onept is that L must be expressive withrespet toWhile and its semantis, and one then shows that Table 6.1 is relativelyomplete (in the sense of Cook). It is beyond the sope of this book to go deeperinto these matters but we provide referenes in Chapter 7.6.4 Extensions of the axiomati systemIn this setion we shall onsider two extensions of the inferene system for par-tial orretness assertions. The �rst extension shows how the approah an bemodi�ed to prove total orretness assertions thereby allowing us to reason abouttermination properties. In the seond extension we onsider how to extend theinferene systems to more language onstruts, in partiular reursive proedures.Total orretness assertionsWe shall now onsider formulae of the formf P g S f + Q gThe idea is thatif the preondition P is ful�lledthen S is guaranteed to terminate (as reorded by the symbol +)and the �nal state will satisfy the postondition Q .This is formalized by de�ning validity of f P g S f + Q g byj=t f P g S f + Q g

192 6 Axiomati Program Veri�ation[asst℄ f P [x 7!A[[a℄℄℄ g x := a f + P g[skipt℄ f P g skip f + P g[ompt℄ f P g S 1 f + Q g, f Q g S 2 f + R gf P g S 1; S 2 f + R g[ift℄ f B[[b℄℄ ^ P g S 1 f + Q g, f :B[[b℄℄ ^ P g S 2 f + Q gf P g if b then S 1 else S 2 f + Q g[whilet℄ f P(z+1) g S f + P(z) gf 9z.P(z) g while b do S f + P(0) gwhere P(z+1)) B[[b℄℄, P(0)) :B[[b℄℄and z ranges over natural numbers (that is z�0)[onst℄ f P 0 g S f + Q 0 gf P g S f + Q g where P) P 0 and Q 0) QTable 6.2: Axiomati system for total orretnessif and only iffor all states s, if P s = tt then there exists s 0 suh thatQ s 0 = tt and hS , si ! s 0The inferene system for total orretness assertions is very similar to that forpartial orretness assertions, the only di�erene being that the rule for the while-onstrut has hanged. The omplete set of axioms and rules is given in Table 6.2.We shall write`t f P g S f + Q gif there exists an inferene tree with the formula f P g S f + Q g as root, that isif the formula is provably in the inferene system.In the rule [whilet℄ we use a parameterized family P(z) of prediates for theinvariant. The idea is that z is the number of unfoldings of the while-loop that willbe neessary. So if the while-loop does not have to be unfolded at all then P(0)holds and it must imply that b is false. If the while-loop has to be unfolded z+1times then P(z+1) holds and b must hold before the body of the loop is exeuted;then P(z) will hold afterwards so that we have dereased the total number oftimes the loop remains to be unfolded. The preondition of the onlusion of therule expresses that there exists a bound on the number of times the loop has to beunfolded and the postondition expresses that when the while-loop has terminatedthen no more unfoldings are neessary.

6.4 Extensions of the axiomati system 193Example 6.28 The total orretness of the fatorial statement an be expressedby the following assertion:f x > 0 ^ x = n gy := 1; while :(x=1) do (y := y?x; x := x�1)f + y = n! gwhere y = n! is an abbreviation for the prediateP where P s = (s y = (s n)!)In addition to expressing that the �nal value of y is the fatorial of the initialvalue of x the assertion also expresses that the program does indeed terminate onall states satisfying the preondition. The inferene of this assertion proeeds ina number of stages. First we de�ne the prediate INV (z) that is going to be theinvariant of the while-loopINV (z) s = (s x > 0 and (s y) ? (s x)! = (s n)! and s x = z + 1)We shall �rst onsider the body of the loop. Using [asst℄ we get`t f INV (z)[x7!x�1℄ g x := x�1 f + INV (z) gSimilarly, we get`t f (INV (z)[x7!x�1℄)[y7!y?x℄ g y := y ? x f + INV (z)[x7!x�1℄ gWe an now apply the rule [ompt℄ to the two assertions above and get`t f (INV (z)[x7!x�1℄)[y7!y?x℄ g y := y ? x; x := x�1 f + INV (z) gIt is easy to verify thatINV (z+1)) (INV (z)[x7!x�1℄)[y7!y?x℄so using the rule [onst℄ we get`t f INV (z+1) g y := y ? x; x := x�1 f + INV (z) gIt is straightforward to verify thatINV (0)) :(:(x=1)), andINV (z+1)) :(x=1)Therefore we an use the rule [whilet℄ and get`t f 9z.INV (z) g while :(x=1) do (y := y?x; x := x�1) f + INV (0) gWe shall now apply the axiom [asst℄ to the statement y := 1 and get

194 6 Axiomati Program Veri�ation`t f (9z.INV (z))[y7!1℄ g y := 1 f + 9z.INV (z) gso using [ompt℄ we get`t f (9z.INV (z))[y7!1℄ gy := 1; while :(x=1) do (y := y?x; x := x�1)f + INV (0) gClearly we havex > 0 ^ x = n) (9z.INV (z))[y7!1℄, andINV (0)) y = n!so applying rule [onst℄ we get`t f x > 0 ^ x = n gy := 1; while :(x=1) do (y := y?x; x := x�1)f + y = n! gas required. 2Exerise 6.29 Suggest a total orretness inferene rule for repeat S until b.You are not allowed to rely on the existene of a while-onstrut in the program-ming language. 2Lemma 6.30 The total orretness system of Table 6.2 is sound, that is for everytotal orretness formula f P g S f + Q g we have`t f P g S f + Q g implies j=t f P g S f + Q gProof: The proof proeeds by indution on the shape of the inferene tree just asin the proof of Lemma 6.17.The ase [asst℄: We shall prove that the axiom is valid, so assume that s is suhthat (P [x 7!A[[a℄℄℄) s = tt and let s 0 = s[x 7!A[[a℄℄s℄. Then [assns℄ giveshx := a, si ! s 0and from (P [x 7!A[[a℄℄℄) s = tt we get P s 0 = tt as was to be shown.The ase [skipt℄: This ase is immediate.The ase [ompt℄: We assume thatj=t f P g S 1 f + Q g, and (*)j=t f Q g S 2 f + R g (**)and we have to prove that j=t f P g S 1; S 2 f + R g. So let s be suh that P s = tt.From (*) we get that there exists a state s 0 suh that Q s 0 = tt and

6.4 Extensions of the axiomati system 195hS 1, si ! s 0Sine Q s 0 = tt we get from (**) that there exists a state s 00 suh that R s 00 = ttand hS 2, s 0i ! s 00Using [ompns℄ we therefore gethS 1; S 2, si ! s 00and sine R s 00 = tt we have �nished this ase.The ase [ift℄: Assume thatj=t f B[[b℄℄ ^ P g S 1 f + Q g, and (*)j=t f :B[[b℄℄ ^ P g S 2 f + Q gTo prove j=t f P g if b then S 1 else S 2 f + Q g onsider a state s suh thatP s = tt. We have two ases. If B[[b℄℄s = tt then (B[[b℄℄ ^ P) s = tt and from (*)we get that there is a state s 0 suh that Q s 0 = tt andhS 1, si ! s 0From [ifns℄ we then gethif b then S 1 else S 2, si ! s 0as was to be proved. If B[[b℄℄s = � the result follows in a similar way from theseond assumption.The ase [whilet℄: Assume thatj=t f P(z+1) g S f + P(z) g, (*)P(z+1)) B[[b℄℄, andP(0)) :B[[b℄℄To prove j=t f 9z.P(z) g while b do S f + P(0) g it is suÆient to prove that forall natural numbers zif P(z) s = tt then there exists a state s 0 suh thatP(0) s 0 = tt and hwhile b do S , si ! s 0 (**)So onsider a state s suh that P(z) s = tt. The proof is now by numerialindution on z.First assume that z = 0. The assumption P(0)) :B[[b℄℄ gives that B[[b℄℄s =� and from [while�ns℄ we gethwhile b do S , si ! s

196 6 Axiomati Program Veri�ationSine P(0) s = tt this proves the base ase.For the indution step assume that (**) holds for all states satisfying P(z) andthat P(z+1) s = tt. From (*) we get that there is a state s 0 suh that P(z) s 0 =tt andhS , si ! s 0The numerial indution hypothesis applied to s 0 gives that there is some state s 00suh that P(0) s 00 = tt andhwhile b do S , s 0i ! s 00Furthermore, the assumption P(z+1)) B[[b℄℄ gives B[[b℄℄s = tt. We an thereforeapply [whilettns℄ and get thathwhile b do S , si ! s 00Sine P(0) s 00 = tt this ompletes the proof of (**).The ase [onst℄: Suppose thatj=t f P 0 g S f + Q 0 g,P) P 0, andQ 0) QTo prove j=t f P g S f + Q g onsider a state s suh that P s = tt. Then P 0 s =tt and there is a state s 0 suh that Q 0 s 0 = tt andhS , si ! s 0However, we also have that Q s 0 = tt and this proves the result. 2Exerise 6.31 Show that the inferene rule for repeat S until b suggested inExerise 6.29 preserves validity. Argue that this means that the entire proof systemonsisting of the axioms and rules of Table 6.2 together with the rule of Exerise6.29 is sound. 2Exerise 6.32 * Prove that the inferene system of Table 6.2 is omplete, that isj=t f P g S f + Q g implies `t f P g S f + Q g 2Exerise 6.33 * Prove thatif `t f P g S f + Q g then `p f P g S f Q gDoes the onverse result hold? 2

6.4 Extensions of the axiomati system 197Extensions of WhileWe onlude by onsidering an extension of While with non-determinism and(parameterless) proedures. The syntax of the extended language is given byS ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do S j S 1 or S 2j begin pro p is S 1; S 2 end j all pNote that in begin pro p is S 1; S 2 end the body of p is S 1 and the remainderof the program is S 2.Non-determinismIt is straightforward to handle non-determinism (in the sense of Setion 2.4) inthe axiomati approah. The idea is that an assertion holds for S 1 or S 2 if thesimilar assertion holds for S 1 as well as for S 2. The motivation for this is thatwhen reasoning about the statement we have no way of inuening whether S 1 orS 2 is hosen. For partial orretness we thus extend Table 6.1 with the rule[orp℄ f P g S 1 f Q g, f P g S 2 f Q gf P g S 1 or S 2 f Q gFor total orretness we extend Table 6.2 with the rule[ort℄ f P g S 1 f + Q g, f P g S 2 f + Q gf P g S 1 or S 2 f + Q gWhen dealing with soundness and ompleteness of these rules one must be arefulin using a semantis that models \non-deterministi hoie" in the proper manner.We saw in Setion 2.4 that this is the ase for strutural operational semantis butnot for natural semantis. With respet to the strutural operational semantis onean show that the above rules are sound and that the resulting inferene systemsare omplete. If one insists on using the natural semantis the or-onstrut wouldmodel a kind of \angeli hoie" and both rules would be sound. However, onlythe partial orretness inferene system will be omplete.Non-reursive proeduresFor the sake of simpliity we shall restrit our attention to statements with atmost one proedure delaration. For non-reursive proedures the idea is that anassertion that holds for the body of the proedure also holds for the alls of theproedure. This motivates extending the partial orretness inferene system ofTable 6.1 with the rule

198 6 Axiomati Program Veri�ation[allp℄ f P g S f Q gf P g all p f Q g where p is de�ned by pro p is SSimilarly the inferene system for total orretness in Table 6.2 an be extendedwith the rule[allt℄ f P g S f + Q gf P g all p f + Q g where p is de�ned by pro p is SIn both ases the resulting inferene system an be proved sound and omplete.Reursive proeduresThe above rules turn out to be insuÆient when proedures are allowed to bereursive: in order to prove an assertion for all p one has to prove the assertionfor the body of the proedure and this implies that one has to prove an assertionabout eah ourrene of all p inside the body and so on.Consider �rst the ase of partial orretness assertions. In order to prove someproperty f P g all p f Q g we shall prove the similar property for the body ofthe proedure but under the assumption that f P g all p f Q g holds for thereursive alls of p. Often this is expressed by a rule of the form[allrep ℄ f P g all p f Q g `p f P g S f Q gf P g all p f Q gwhere p is de�ned by pro p is SThe premise of the rule expresses that f P g S f Q g is provable under theassumption that f P g all p f Q g an be proved for the reursive alls presentin S . The onlusion expresses that f P g all p f Q g holds for all alls of p.Example 6.34 Consider the following statementbegin pro fa is (if x = 1 then skipelse (y := x?y; x := x�1; all fa));y := 1; all faendWe want to prove that the �nal value of y is the fatorial of the initial value of x.We shall prove thatf x > 0 ^ n = y ? x! g all fa f y = n gwhere x > 0 ^ n = y ? x! is an abbreviation for the prediate P de�ned byP s = (s x > 0 and s n = s y ? (s x)!)

6.4 Extensions of the axiomati system 199We assume that`p f x > 0 ^ n = y ? x! g all fa f y = n g (*)holds for the reursive alls of fa. We shall then onstrut a proof off x > 0 ^ n = y ? x! gif x = 1 then skip else (y := x?y; x := x�1; all fa)f y = n g (**)and, using [allrep ℄ we obtain a proof of (*) for all ourrenes of all fa. Toprove (**) we �rst use the assumption (*) to get`p f x > 0 ^ n = y ? x! g all fa f y = n gThen we apply [assp℄ and [ompp℄ twie and get`p f ((x > 0 ^ n = y ? x!)[x7!x�1℄)[y7!x?y℄ gy := x?y; x := x�1; all faf y = n gWe have:(x=1) ^ (x > 0 ^ n = y ? x!)) ((x > 0 ^ n = y ? x!)[x7!x�1℄)[y7!x?y℄so using [onsp℄ we get`p f :(x=1) ^ (x > 0 ^ n = y ? x!) gy := x?y; x := x�1; all faf y = n gUsing thatx=1 ^ x > 0 ^ n = y ? x!) y = nit is easy to prove`p f x=1 ^ x > 0 ^ n = y ? x! g skip f y = n gso [ifp℄ an be applied and gives a proof of (**). 2Table 6.1 extended with the rule [allrep ℄ an be proved to be sound. However,in order to get a ompleteness result the inferene system has to be extended withadditional rules. To illustrate why this is neessary onsider the following versionof the fatorial program:

200 6 Axiomati Program Veri�ationbegin pro fa is if x=1 then y := 1else (x := x�1; all fa; x := x+1; y := x?y);all faendAssume that we want to prove that this program does not hange the value of x,that isf x = n g all fa f x = n g (*)In order to do that we assume that we have a proof of (*) for the reursive all offa and we have to onstrut a proof of the property for the body of the proedure.It seems that in order to do so we must onstrut a proof off x = n�1 g all fa f x = n�1 gand there are no axioms and rules that allow us to obtain suh a proof from (*).However, we shall not go further into this, but Chapter 7 will provide appropriatereferenes.The ase of total orretness is slightly more ompliated beause we have tobound the number of reursive alls. The rule adopted is[allret ℄ f P(z) g all p f + Q g `t f P(z+1) g S f + Q gf 9z.P(z) g all p f + Q gwhere :P(0) holdsand z ranges over the natural numbers (that is z�0)and where p is de�ned by pro p is SThe premise of this rule expresses that if we assume that we have a proof off P(z) g all p f + Q g for all reursive alls of p of depth at most z then wean prove f P(z+1) g S f + Q g. The onlusion expresses that for any depth ofreursive alls we have a proof of f 9z.P(z) g all p f + Q g.The inferene system of Table 6.2 extended with the rule [allret ℄ an be provedto be sound. If it is extended with additional rules (as disussed above) it an alsobe proved to be omplete.6.5 Assertions for exeution timeA proof system for total orretness an be used to prove that a program doesindeed terminate but it does not say how many resoures it needs in order toterminate. We shall now show how to extend the total orretness proof system ofTable 6.2 to prove the order of magnitude of the exeution time of a statement.

6.5 Assertions for exeution time 201It is easy to give some informal guidelines for how to determine the order ofmagnitude of exeution time:assignment: the exeution time is O(1), that is, it is bounded by a onstant,skip: the exeution time is O(1),omposition: the exeution time is, to within a onstant fator, the sum of theexeution times of eah of the statements,onditional: the exeution time is, to within a onstant fator, the largest of theexeution times of the two branhes, anditeration: the exeution time of the loop is, to within a onstant fator, the sum,over all iterations round the loop, of the time to exeute the body.The idea now is to formalize these rules by giving an inferene system for reasoningabout exeution times. To do so we shall proeed in three stages:� �rst we speify the exat time needed to evaluate arithmeti and booleanexpressions,� next we extend the natural semantis of Chapter 2 to ount the exat exe-ution time, and� �nally we extend the total orretness proof system to prove the order ofmagnitude of the exeution time of statements.However, before addressing these issues we have to �x a omputational model, thatis we have to determine how to ount the ost of the various operations. Theatual hoie is not so important but for the sake of simpliity we have based itupon the abstrat mahine of Chapter 3. The idea is that eah instrution ofthe mahine takes one time unit and the time required to exeute an arithmetiexpression, a boolean expression or a statement will be the time required to exeutethe generated ode. However, no knowledge of Chapter 3 is required in the sequel.Exat exeution times for expressionsThe time needed to evaluate an arithmeti expression is given by a funtionT A: Aexp ! Zso T A[[a℄℄ is the number of time units required to evaluate a in any state. Similarly,the funtionT B: Bexp ! Zdetermines the number of time units required to evaluate a boolean expression.These funtions are de�ned in Table 6.3.

202 6 Axiomati Program Veri�ationT A[[n℄℄ = 1T A[[x ℄℄ = 1T A[[a1 + a2℄℄ = T A[[a1℄℄ + T A[[a2℄℄ + 1T A[[a1 ? a2℄℄ = T A[[a1℄℄ + T A[[a2℄℄ + 1T A[[a1 � a2℄℄ = T A[[a1℄℄ + T A[[a2℄℄ + 1T B[[true℄℄ = 1T B[[false℄℄ = 1T B[[a1 = a2℄℄ = T A[[a1℄℄ + T A[[a2℄℄ + 1T B[[a1 � a2℄℄ = T A[[a1℄℄ + T A[[a2℄℄ + 1T B[[:b℄℄ = T B[[b℄℄ + 1T B[[b1 ^ b2℄℄ = T B[[b1℄℄ + T B[[b2℄℄ + 1Table 6.3: Exat exeution times for expressionsExat exeution times for statementsTurning to the exeution time for statements we shall extend the natural semantisof Table 2.1 to speify the time requirements. This is done by extending thetransitions to have the formhS , si !t s 0meaning that if S is exeuted from state s then it will terminate in state s 0 andexatly t time units will be required for this. The extension of Table 2.1 is fairlystraightforward and is given in Table 6.4.The inferene systemThe inferene system for proving the order of magnitude of the exeution time ofstatements will have assertions of the formf P g S f e + Q gwhere P and Q are prediates as in the previous inferene systems and e is anarithmeti expression (that is e 2 Aexp). The idea is thatif the exeution of S is started in a state satisfying Pthen it terminates in a state satisfying Qand the required exeution time is O(e), that is has order of magnitude e.So for example

6.5 Assertions for exeution time 203[asstns℄ hx := a, si !T A[[a℄℄+1 s[x 7!A[[a℄℄s℄[skiptns℄ hskip, si !1 s[omptns℄ hS 1,si !t1 s 0, hS 2,s 0i !t2 s 00hS 1;S 2, si !t1+t2 s 00[if tttns℄ hS 1,si !t s 0hif b then S 1 else S 2, si !T B[[b℄℄+t+1 s 0 if B[[b℄℄s = tt[if�tns℄ hS 2,si !t s 0hif b then S 1 else S 2, si !T B[[b℄℄+t+1 s 0 if B[[b℄℄s = �[while tttns℄ hS ,si !t s 0, hwhile b do S , s 0i !t0 s 00hwhile b do S , si !T B[[b℄℄+t+t0+2 s 00 if B[[b℄℄s = tt[while�tns℄ hwhile b do S , si !T B[[b℄℄+3 s if B[[b℄℄s = �Table 6.4: Natural semantis for While with exat exeution timesf x = 3 g y := 1; while :(x=1) do (y := y?x; x := x�1) f 1 + true gexpresses that the exeution of the fatorial statement from a state where x has thevalue 3 has order of magnitude 1, that is it is bounded by a onstant. Similarly,f x > 0 g y := 1; while :(x=1) do (y := y?x; x := x�1) f x + true gexpresses that the exeution of the fatorial statement on a state where x is positivehas order of magnitude x.Formally, validity of the formula f P g S f e + Q g is de�ned byj=e f P g S f e + Q gif and only ifthere exists a natural number k suh that for all states s,if P s = tt then there exists a state s 0 and a number t suh thatQ s 0 = tt, hS , si !t s 0, and t � k ? (A[[e℄℄s)Note that the expression e is evaluated in the initial state rather than the �nalstate.The axioms and rules of the inferene system are given in Table 6.5. Provabilityof the assertion f P g S f e + Q g in the inferene system is written`e f P g S f e + Q g

204 6 Axiomati Program Veri�ation[asse℄ f P [x 7!A[[a℄℄℄ g x := a f 1 + P g[skipe℄ f P g skip f 1 + P g[ompe℄ f P ^ B[[e 02=u℄℄ g S 1 f e1 + Q ^ B[[e2�u℄℄ g, f Q g S 2 f e2 + R gf P g S 1; S 2 f e1+e 02 + R gwhere u is an unused logial variable[ife℄ f B[[b℄℄ ^ P g S 1 f e + Q g, f :B[[b℄℄ ^ P g S 2 f e + Q gf P g if b then S 1 else S 2 f e + Q g[whilee℄ f P(z+1) ^ B[[e 0 =u℄℄ g S f e1 + P(z) ^ B[[e�u℄℄ gf 9z.P(z) g while b do S f e + P(0) gwhere P(z+1)) B[[b℄℄ ^ B[[e�e1+e 0℄℄, P(0)) :B[[b℄℄ ^ B[[1�e℄℄and u is an unused logial variableand z ranges over natural numbers (that is z�0)[onse℄ f P 0 g S f e 0 + Q 0 gf P g S f e + Q gwhere (for some natural number k) P) P 0 ^ B[[e 0�k?e℄℄and Q 0) QTable 6.5: Axiomati system for order of magnitude of exeution timeThe assignment statement and the skip statement an be exeuted in onstanttime and therefore we use the arithmeti expression 1.The rule [ompe℄ assumes that we have proofs showing that e1 and e2 are theorder of magnitudes of the exeution times for the two statements. However, e1expresses the time requirements of S 1 relative to the initial state of S 1 and e2expresses the time requirements relative to the initial state of S 2. This means thatwe annot simply use e1 + e2 as the time requirement for S 1; S 2. We have toreplae e2 with an expression e 02 suh that e 02 evaluated in the initial state of S 1will bound the value of e2 in the initial state of S 2 (whih is the �nal state of S 1).This is expressed by the extended preondition and postondition of S 1 using thelogial variable u.The rule [ife℄ is fairly straightforward sine the time required for the test isonstant.In the rule for the while-onstrut we assume that the exeution time is e1 forthe body and is e for the loop itself. As in the rule [ompe℄ we annot just usee1 + e as the total time required beause e1 refers to the state before the bodyof the loop is exeuted and e to the state after the body is exeuted one. We

6.5 Assertions for exeution time 205shall therefore require that there is an expression e 0 suh that e 0 evaluated beforethe body will bound e evaluated after the body. Then it must be the ase that esatis�es e � e1 + e 0 beause e has to bound the time for exeuting the while-loopindependently of the number of times it is unfolded. As we shall see in Example6.36, this orresponds to the reurrene equations that often have to be solvedwhen analysing the exeution time of programs. Finally, the rule [onse℄ should bestraightforward.Example 6.35 We shall now prove that the exeution time of the fatorial state-ment has order of magnitude x. This an be expressed by the following assertion:f x > 0 g y := 1; while :(x=1) do (y := y?x; x := x�1) f x + true gThe inferene of this assertion proeeds in a number of stages. First we de�ne theprediate INV (z) that is to be the invariant of the while-loopINV (z) s = (s x > 0 and s x = z + 1)The logial variables u1 and u2 are used for the while-loop and the body of thewhile-loop, respetively. We shall �rst onsider the body of the loop. Using [asse℄we get̀ e f (INV (z) ^ x�u1)[x7!x�1℄ g x := x � 1 f 1 + INV (z) ^ x�u1 gSimilarly, we get`e f ((INV (z) ^ x�u1)[x7!x�1℄ ^ 1�u2)[y7!y?x℄ gy := y ? xf 1 + (INV (z) ^ x�u1)[x7!x�1℄ ^ 1�u2 gBefore applying the rule [ompe℄ we have to modify the preondition of the aboveassertion. We haveINV (z+1) ^ x�1=u1 ^ 1=u2) ((INV (z) ^ x�u1)[x7!x�1℄ ^ 1�u2)[y7!y?x℄so using [onse℄ we get`e f INV (z+1) ^ x�1=u1 ^ 1=u2 gy := y ? xf 1 + (INV (z) ^ x�u1)[x7!x�1℄ ^ 1�u2 gWe an now apply [ompe℄ and get

206 6 Axiomati Program Veri�ation`e f INV (z+1) ^ x�1=u1 gy := y ? x; x := x�1f 1+1 + INV (z) ^ x�u1 gand using [onse℄ we get`e f INV (z+1) ^ x�1=u1 gy := y ? x; x := x�1f 1 + INV (z) ^ x�u1 gIt is easy to verify thatINV (z+1)) :(x = 1) ^ x�1+(x�1), andINV (0)) :(:(x = 1)) ^ 1�xTherefore we an use the rule [whilee℄ and get`e f 9z.INV (z) g while :(x=1) do (y := y?x; x := x�1) f x + INV (0) gWe shall now apply the axiom [asse℄ to the statement y := 1 and get`e f (9z.INV (z) ^ 1�u3)[y7!1℄ g y := 1 f 1 + 9z.INV (z) ^ 1�u3 gWe havex>0 ^ 1=u3) (9z.INV (z) ^ 1�u3)[y7!1℄so using [onse℄ we get`e f x>0 ^ 1=u3 g y := 1 f 1 + 9z.INV (z) ^ 1�u3 gThe rule [ompe℄ now gives`e f x>0 gy := 1; while :(x=1) do (y := y?x; x := x�1)f 1+x + INV (0) gClearly we havex>0) 1+x � 2?x, andINV (0)) trueso applying rule [onse℄ we get`e f x > 0 gy := 1; while :(x=1) do (y := y?x; x := x�1)f x + true g

6.5 Assertions for exeution time 207as required. 2Example 6.36 Assume now that we want to determine an arithmeti expressione fa suh that`e f x > 0 gy := 1; while :(x=1) do (y := y?x; x := x�1)f e fa + true gIn other words we want to determine the order of magnitude of the time requiredto exeute the fatorial statement. We an then attempt onstruting a proofof the above assertion using the inferene system of Table 6.5 with e fa being anunspei�ed arithmeti expression. The various side onditions of the rules willthen speify a set of (in)equations that have to be ful�lled by e fa in order for theproof to exist.We shall �rst onsider the body of the loop. Very muh as in the previousexample we get`e f INV (z+1) ^ e[x7!x�1℄=u1 gy := y ? x; x := x�1f 1 + INV (z) ^ e�u1 gwhere e is the exeution time of the while-onstrut. We an now apply the rule[whilee℄ if e ful�ls the onditionsINV (z+1)) e�1+e[x7!x�1℄INV (0)) 1�e (*)and we will get`e f 9z.INV (z) g while :(x=1) do (y := y?x; x := x�1) f e + INV (0) gThe requirement (*) orresponds to the reurrene equationT (x) = 1 + T (x�1)T (1) = 1obtained by the standard tehniques from exeution time analysis. If we take e tobe x then (*) is ful�lled. The remainder of the proof is very muh as in Exerise6.35 and we get that e fa must satisfyx > 0) x+1 � k?e fa for some onstant kso e fa may be taken to be x. 2

208 6 Axiomati Program Veri�ationExerise 6.37 Modify the proof of Lemma 6.30 to show that the inferene systemof Table 6.5 is sound. 2Exerise 6.38 ** Suggest an alternative rule for while b do S that expressesthat its exeution time, negleting onstant fators, is the produt of the numberof times the loop is exeuted and the maximal exeution time for the body of theloop. 2Exerise 6.39 Suggest an inferene rule for repeat S until b. You are notallowed to rely on the existene of a while-onstrut in the language. 2

Chapter 7Further ReadingIn this book we have overed the basi ingredients in three approahes to semantis:� operational semantis,� denotational semantis, and� axiomati semantis.We have onentrated on a rather simple language of while-programs and havestudied the underlying theories and the formal relationships between the variousapproahes. The power of the three approahes have been illustrated by vari-ous extensions of While: non-determinism, parallelism, reursive proedures andexeptions.We believe that formal semantis is an important tool for reasoning about manyaspets of the behaviour of programs and programming languages. To support thisbelief we have given three examples, one for eah approah to semantis:� a simple ompiler,� a stati program analysis, and� an inferene system for exeution time.In onlusion we shall provide a few pointers to the literature (mainly textbooks)where a more omprehensive treatment of language features or theoretial aspetsmay be found. We do not referene the vast number of researh publiations inthe area but rely on the referenes in the books mentioned.Operational semantisStrutural operational semantis was introdued by Gordon Plotkin in [14℄. Thisis a standard referene and overs a number of features from imperative and fun-tional languages whereas features from parallel languages are overed in [15℄. A209

210 7 Further Readingmore introdutory treatment of strutural operational semantis is given in [9℄.Natural semantis is derived from strutural operational semantis and the basiideas are presented in [6℄ for a funtional language.Although we have overed many of the essential ideas behind operational se-mantis we should like to mention three tehniques that have had to be omitted.A tehnique that is often used when speifying a strutural operational se-mantis is to extend the syntati omponent of the on�gurations with speialnotation for reording partially proessed onstruts. The inferene system willthen ontain axioms and rules that handle these \extended" on�gurations. Thistehnique may be used to speify a strutural operational semantis of the lan-guages Blok and Pro in Setion 2.5 and to speify a strutural operationalsemantis of expressions.Both kinds of operational semantis an easily be extended to ope expliitlywith dynami errors (as e.g. division by zero). The idea is to extend the set ofon�gurations with speial error-on�gurations and then augment the inferenesystem with extra axioms and rules for how to handle these on�gurations.Often programs have to ful�l ertain onditions in order to be statially well-formed and hene prelude ertain dynami errors. These onditions an beformulated using indutively de�ned prediates and may be integrated with theoperational semantis.Provably orret implementationThe orretness of the implementation of Chapter 3 was a relatively simple proofbeause it was based on an abstrat mahine designed for the purpose. In general,when more realisti mahines or larger languages are onsidered, proofs easilybeome unwieldy and perhaps for this reason there is no ideal textbook in thisarea. We therefore only referene two researh papers: [7℄ for an approah basedon natural semantis and [13℄ for an approah based on denotational semantis.Denotational semantisA general introdution to denotational semantis (as developed by C. Straheyand D. Sott) may be found in [16℄. It overs denotational semantis for (mainly)imperative languages and overs the fundamentals of domain theory (inludingreexive domains). Another good referene for imperative languages is [8℄ but itdoes not over the domain theory. We should also mention a lassi in the �eld[17℄ even though the domain theory is based on the (by now obsolete) approah ofomplete latties.We have restrited the treatment of domain theory to what is needed for spei-fying the denotational semantis of the while-language. The bene�t of this is thatwe an restrit ourselves to partial funtions between states and thereby obtain a

211relatively simple theoretial development. The drawbak is that it beomes ratherumbersome to verify the existene of semanti spei�ations for other languages(as evidened in Setion 4.5).The traditional solution is to develop a meta-language for expressing denota-tional de�nitions. The theoretial foundation of this language will then ensure thatthe semanti funtions do exist as long as one only uses domains and operationsfrom the meta-language. The bene�t of this is obvious; the drawbak is that onehas to prove a fair amount of results but the e�orts are greatly rewarded in thelong run. Both [16℄ and [17℄ ontain suh a development.The denotational approah an handle abortion and non-determinism usinga kind of powersets alled power-domains. Certain kinds of parallelism an behandled as well but for many purposes it is better to use a strutural operationalsemantis instead.Stati program analysisA seletion of stati program analysis tehniques for imperative languages (as wellas tehniques for implementations on realisti mahines) is given in [3℄; but unfor-tunately, no onsiderations of orretness are given. Treatments of orretness areoften based on abstrat interpretation and [1℄ surveys a number of approahes.Axiomati program veri�ationA general introdution to program veri�ation, and in partiular axiomati se-mantis may be found in [11℄. The presentation overs a owhart language, awhile-language and a (�rst order) funtional language and also inludes a studyof expressiveness (as needed for the intensional approah to axiomati semantis).Many books, inluding [10℄, develop axiomati program veri�ation together withpratially motivated examples. A good introdution to the analysis of resourerequirements of programs is [2℄ and the formulation as formal inferene systemsmay be found in [12℄. We should also mention a lassi [5℄ that studies soundnessand ompleteness properties with respet to a denotational semantis. Rules forproedures may be found in [4℄.We should point out that we have used the extensional approah to speifyingthe assertions of the inferene systems. This allows us to onentrate on theformulation of the inferene systems without having to worry about the existeneof the assertions in an expliit assertion language. However, it is more ommon touse the intensional approah as is done in [11℄.

212 7 Further Reading

Appendix AReview of NotationWe use the following notation:9 there exists8 for allf x j : : :x : : : g the set of those x suh that : : :x : : : holdsx 2 X x is a member of the set XX � Y set X is ontained in set YX [Y f z j z2X or z2Y g (union)X \ Y f z j z2X and z2Y g (intersetion)X n Y f z j z2X and z 62Y g (set di�erene)X � Y f hx , yi j x2X and y2Y g (Cartesian produt)P(X) f Z j Z � X g (powerset)SY f y j 9Y2Y: y2Y g (so that Sf Y 1, Y 2 g = Y 1[Y 2); the empty setT f tt, � g (truth values tt (true) and � (false))N f 0, 1, 2, : : : g (natural numbers)Z f : : :, {2, {1, 0, 1, 2, : : : g (integers)f :X!Y f is a total funtion from X to YX!Y f f j f :X!Y gf :X ,!Y f is a partial funtion from X to YX ,!Y f f j f :X ,!Y gIn addition to this we have speial notations for funtions, relations, prediates213

214 A Review of Notationand transition systems.FuntionsThe e�et of a funtion f :X!Y is expressed by its graph:graph(f) = f hx , yi2X�Y j f x = y gwhih is merely an element of P(X�Y). The graph of f has the following properties� hx , yi2graph(f) and hx , y 0i2graph(f) imply y = y 0, and� 8x2X : 9y2Y : hx , yi2 graph(f)This expresses the single-valuedness of f and the totality of f . We say that f isinjetive if f x = f x 0 implies that x = x 0.A partial funtion g :X ,!Y is a funtion from a subset X g of X to Y , that isg :X g!Y . Again one may de�negraph(g) = f hx , yi2X�Y j g x = y and x2Xg gbut now only an analogue of the single-valuedness property above is satis�ed. Weshall write g x = y whenever hx , yi2graph(g) and g x = undef whenever x 62X g,that is whenever :9y2Y : hx , yi2graph(g). To distinguish between a funtion fand a partial funtion g one often alls f a total funtion. We shall view the partialfuntions as enompassing the total funtions.For total funtions f 1 and f 2 we de�ne their omposition f 2Æf 1 by(f 2Æf 1) x = f 2(f 1 x)(Note that the opposite order is sometimes used in the literature.) For partialfuntions g1 and g2 we de�ne g2Æg1 similarly:(g2Æg1) x = z if there exists y suh that g1 x = y and g2 y = z(g2Æg1) x = undef if g1 x = undef orif there exists y suh that g1 x = ybut g2 y = undefThe identity funtion id:X!X is de�ned byid x = xFinally, if f :X!Y , x2X and y2Y then the funtion f [x 7!y ℄:X!Y is de�ned byf [x 7!y ℄ x 0 = 8<: y if x = x 0f x 0 otherwiseA similar notation may be used when f is a partial funtion.The funtion f is of order of magnitude g , written O(g), if there exists a naturalnumber k suh that 8x . f x � k ? (g x).

215RelationsA relation from X to Y is a subset of X�Y (that is an element of P(X�Y)). Arelation on X is a subset of X�X . If f :X!Y or f :X ,!Y then the graph of f is arelation. (Sometimes a funtion is identi�ed with its graph but we shall keep thedistintion.) The identity relation on X is the relationIX = f hx , x i j x2X gfrom X to X . When X is lear from the ontext we shall omit the subsript Xand simply write I.If R1�X�Y and R2�Y�Z the omposition of R1 followed by R2, whih wedenote by R1�R2, is de�ned byR1�R2 = f hx , z i j 9y2Y : hx , yi2R1 and hy , z i2R2 gNote that the order of omposition di�ers from that used for funtions,graph(f 2Æf 1) = graph(f 1) � graph(f 2)and that we have the equationI � R = R � I = RIf R is a relation on X then the reexive transitive losure is the relation R�on X de�ned byR� = f hx , x 0i j 9n�1: 9x 1, : : :, x n: x = x 1 and x 0 = x nand 8i<n: hx i, x i+1i2R gNote that by taking n=1 and x=x 0=x 1 it follows that I�R�. In a similar way itfollows that R�R�. Finally, we de�neR+ = R � R�and observe that R � R+ � R�.PrediatesA prediate on X is a funtion from X to T. If p:X!T is a prediate on X , therelation Ip on X is de�ned byIp = f hx , x i j x2X and p x = tt gNote that Ip � I and thatIp � R = f hx , yi j p x = tt and hx , yi2R gR � Iq = f hx , yi j hx , yi2R and q y = tt g

216 A Review of NotationTransition systemsA transition system is a triple of the form(�,T, �)where � is a set of on�gurations, T is a subset of � alled the terminal (or �nal)on�gurations and � is a relation on � alled a transition relation. The relation� must satisfy82T: 802�: :(�0)Any on�guration in �nT suh that the transition �0 holds for no 0 is alledstuk.

Appendix BIntrodution to MirandaImplementationsIn this appendix we give the basi de�nitions needed to implement the varioussemanti de�nitions in Miranda. Essentially, this amounts to an implementationof the material of Chapter 1.B.1 Abstrat syntaxFor Num we hoose the primitive type num of Miranda. For Var we hoosestrings of haraters and so de�ne the type synonym:> var == [har℄For eah of the syntati ategories Aexp, Bexp and Stm we de�ne an algebraidata type taking into aount the various possibilities mentioned by the BNFsyntax of Setion 1.2:> aexp ::= N num | V var | Add aexp aexp |> Mult aexp aexp | Sub aexp aexp> bexp ::= TRUE | FALSE | Eq aexp aexp | Le aexp aexp |> Neg bexp | And bexp bexp> stm ::= Ass var aexp | Skip | Comp stm stm |> If bexp stm stm | While bexp stmExample B.1 The fatorial statement of Exerise 1.1 is represented by
217

218 B Introdution to Miranda Implementations> fatorial = Comp (Ass "y" (N 1))> (While (Neg (Eq (V "x") (N 1)))> (Comp (Ass "y" (Mult (V "y") (V "x")))> (Ass "x" (Sub (V "x") (N 1)))))Note that this is a representation of the abstrat syntax of the statement. Onemay be interested in a parser that would translate the more readable formy := 1; while :(x = 1) do (y := y * x; x := x � 1)into the above representation. However, we shall refrain from undertaking the taskof implementing a parser as we are mainly onerned with semantis. 2Exerise B.2 Speify an element of stm that represents the statement onstrutedin Exerise 1.2 for omputing n to the power of m. 2B.2 Evaluation of expressionsWe shall �rst be onerned with the representation of values and states. Thenatural numbers Z will be represented by the type num meaning that the semantifuntion N beomes trivial. The truth values T will be represented by the typebool of booleans. So we de�ne the type synonyms:> z == num> t == boolThe set State is de�ned as the set of funtions from variables to natural numbersso we de�ne:> state == var -> zExample B.3 The state s init that maps all variables exept x to 0 and thatmaps x to 3 an be de�ned by> s init "x" = 3> s init y = 0Note that we enapsulate the spei� variable name x in quotes whereas y an beany variable. 2The funtions A and B will be alled a val and b val in the implementationand they are de�ned by diretly translating Tables 1.1 and 1.2 into Miranda:

B.2 Evaluation of expressions 219> a val :: aexp -> state -> z> b val :: bexp -> state -> t> a val (N n) s = n> a val (V x) s = s x> a val (Add a1 a2) s = (a val a1 s) + (a val a2 s)> a val (Mult a1 a2) s = (a val a1 s) * (a val a2 s)> a val (Sub a1 a2) s = (a val a1 s) - (a val a2 s)> b val TRUE s = True> b val FALSE s = False> b val (Eq a1 a2) s = True, if a val a1 s = a val a2 s> = False, if a val a1 s ~= a val a2 s> b val (Le a1 a2) s = True, if a val a1 s <= a val a2 s> = False, if a val a1 s > a val a2 s> b val (Neg b) s = True, if b val b s = False> = False, if b val b s = True> b val (And b1 b2) s = True, if b val b1 s = True &> b val b2 s = True> = False, if b val b1 s = False \/> b val b2 s = FalseExerise B.4 Construt an algebrai data type for the binary numerals onsid-ered in Setion 1.3. De�ne a funtion n val that assoiates a number (in thedeimal system) to eah numeral. 2Exerise B.5 De�ne funtions> fv aexp :: aexp -> [var℄> fv bexp :: bexp -> [var℄omputing the set of free variables ourring in an expression. Ensure that eahvariable ours at most one in the resulting lists. 2Exerise B.6 De�ne funtions> subst aexp :: aexp -> var -> aexp -> aexp> subst bexp :: bexp -> var -> aexp -> bexp

220 B Introdution to Miranda Implementationsimplementing the substitution operations, that is subst aexp a y a0 onstrutsa[y 7!a0℄ and subst bexp b y a0 onstruts b[y 7!a0℄. 2

Appendix COperational Semantis inMirandaIn this appendix we implement the natural semantis and the strutural opera-tional semantis of Chapter 2 inMiranda and show how similar tehniques an beused to implement an interpreter for the abstrat mahine and the ode generationof Chapter 3.We shall need the de�nitions from Appendix B so we begin by inluding these:> %inlude "appB"In Chapter 2 we distinguish between two kinds of on�gurations, intermediateon�gurations and �nal on�gurations. This is aptured by the algebrai datatype:> onfig ::= Inter stm state | Final stateIn the next setion we shall show how the natural semantis an be implementedand after that we shall turn to the strutural operational semantis.C.1 Natural semantisCorresponding to the relation! in Setion 2.1 we shall introdue a funtion ns stmof type> ns stm :: onfig -> onfigThe argument of this funtion orresponds to the left-hand side of ! whereasthe result produed will orrespond to the right-hand side of the relation. Thisis possible beause Theorem 2.9 shows that the relation is deterministi. Thede�nition of ns stm follows losely the de�nition of ! in Table 2.1:221

222 C Operational Semantis in Miranda> ns stm (Inter (Ass x a) s)> = Final (update s x (a val a s))> where> update s x v y = v, if x = y> = s y, otherwise> ns stm (Inter (Skip) s) = Final s> ns stm (Inter (Comp ss1 ss2) s)> = Final s''> where> Final s' = ns stm (Inter ss1 s)> Final s'' = ns stm (Inter ss2 s')> ns stm (Inter (If b ss1 ss2) s)> = Final s', if b val b s> where> Final s' = ns stm (Inter ss1 s)> ns stm (Inter (If b ss1 ss2) s)> = Final s', if ~b val b s> where> Final s' = ns stm (Inter ss2 s)> ns stm (Inter (While b ss) s)> = Final s'', if b val b s> where> Final s' = ns stm (Inter ss s)> Final s'' = ns stm (Inter (While b ss) s')> ns stm (Inter (While b ss) s)> = Final s, if ~b val b sNote that in the axiom for assignment update s x v orresponds to s[x 7!v ℄.The semanti funtion Sns an now be de�ned by

C.2 Strutural operational semantis 223> s ns ss s = s'> where> Final s' = ns stm (Inter ss s)Example C.1 We an exeute the fatorial statement (see Example B.1) fromthe state s init mapping x to 3 and all other variables to 0 (see Example B.3).The �nal state s fa is obtained as follows:> s fa = s ns fatorial s initTo get the �nal value of y we evaluate s fa "y". 2Exerise C.2 Extend the de�nition of stm and ns stm to inlude the repeat-onstrut. 2Exerise C.3 De�ne an algebrai data type deriv tree representing the deriva-tion trees of the natural semantis. Construt a variant of the funtion s ns oftype s ns :: stm -> state -> deriv treethat onstruts the derivation tree for a given statement and state rather than justthe �nal state. Apply the funtion to some example statements. 2C.2 Strutural operational semantisWhen speifying the strutural operational semantis we shall need to test whether) produes an intermediate on�guration or a �nal on�guration. So we shallintrodue the funtion is Final de�ned by:> is Final (Inter ss s) = False> is Final (Final s) = TrueCorresponding to the relation) we de�ne the funtion sos stm of type:> sos stm :: onfig -> onfigAs in the previous setion the argument of this funtion will orrespond to the on-�guration on the left-hand side of the relation) and the result will orrespond tothe right-hand side. Again this implementation tehnique is only possible beausethe semantis is deterministi (Exerise 2.22). The de�nition of sos stm followsTable 2.2 losely:

224 C Operational Semantis in Miranda> sos stm (Inter (Ass x a) s)> = Final (update s x (a val a s))> where> update s x v y = v, if x = y> = s y, otherwise> sos stm (Inter Skip s) = Final s> sos stm (Inter (Comp ss1 ss2) s)> = Inter (Comp ss1' ss2) s',> if ~is Final(sos stm (Inter ss1 s))> where> Inter ss1' s' = sos stm (Inter ss1 s)> sos stm (Inter (Comp ss1 ss2) s)> = Inter ss2 s',> if is Final(sos stm (Inter ss1 s))> where> Final s' = sos stm (Inter ss1 s)> sos stm (Inter (If b ss1 ss2) s)> = Inter ss1 s, if b val b s> sos stm (Inter (If b ss1 ss2) s)> = Inter ss2 s, if ~b val b s> sos stm (Inter (While b ss) s)> = Inter (If b (Comp ss (While b ss)) Skip) sThe funtion sos stm implements one step of the omputation. The funtionderiv seq de�ned below will determine the omplete derivation sequene (even ifit is in�nite!).> deriv seq (Inter ss s)> = (Inter ss s) : (deriv seq (sos stm (Inter ss s)))> deriv seq (Final s) = [Final s℄The semanti funtion Ssos an now be de�ned by the Miranda funtion s sos:

C.3 Extensions of While 225> s sos ss s = s'> where> Final s' = last (deriv seq (Inter ss s))Example C.4 The derivation sequene obtained by exeuting the fatorial state-ment on the state s init of Example B.3 an now be obtained as follows:> fa seq = deriv seq (Inter fatorial s init)We may want to inspet this in more detail and in partiular we may be interestedin the values of the variables x and y in the various intermediate states. Tofailitate this we use the funtion> show seq fv l = lay (map show onfig l)> where> show onfig (Final s) => "final state:\n"++lay (map (show val s) fv)> show onfig (Inter ss s) => show ss++"\n"++lay (map (show val s) fv)> show val s x = " s("++x++")="++shownum (s x)The funtion all show seq ["x","y"℄ fa seq will for eah on�guration in thederivation sequene fa seq list the statement part and the values of x and y inthe state part.The �nal state of the derivation sequene an be obtained from> s fa' = s sos fatorial s initand the value obtained for y is obtained by exeuting s fa' "y". 2Exerise C.5 Extend the de�nition of stm and sos stm to inlude the repeat-onstrut. 2C.3 Extensions of WhileThe implementation of the natural semantis ofWhile in Setion C.1 will now beextended to the proedure language Pro of Setion 2.5. Rather than presentinga fully worked out implementation we shall give detailed instrutions for how toonstrut it. We shall pay speial attention to the semantis of Pro with statisope rules for variables as well as proedures.

226 C Operational Semantis in MirandaExerise C.6 The �rst step will be to de�ne the datatypes needed to representthe syntax and the semantis of Pro.� Extend the algebrai data type stm with the new forms of statements andde�ne algebrai data types de V and de P for variable delarations andproedure delarations.� De�ne the algebrai type lo to be num suh that loations will be numbers.De�ne the funtionnew :: lo -> losuh that new inrements its argument by one.� De�ne algebrai types env V and env P orresponding to EnvV and EnvP.De�ne the funtionupd P :: (de P, env V, env P) -> env Porresponding to updP.� Finally, we need a type store orresponding to Store. There are at leastthree possibilities: One possibility is to de�nelo' ::= Lo lo j Nextstore == lo' -> zas this will orrespond losely to the de�nition of Store. Alternatively, onemay identify the speial token `next' with loation 0 and then simply de�nestore == lo -> zThe third possibility is to de�nestore == (lo -> z, lo)where the seond omponent orresponds to the value of `next'.Choose a method that seems appropriate to you. 2Exerise C.7 Finally we turn towards the transition systems. We begin by im-plementing the transition system for variable delarations:� De�ne an algebrai data type onfig D for the on�gurations of the transi-tion system for variable delarations.� Then de�ne a funtion

C.4 Provably orret implementation 227ns de V :: onfig D -> onfig Dorresponding to the relation!D.Now we turn to the transition relation for statements:� De�ne an algebrai data type onfig P orresponding to the on�gurationshS , stoi and sto of the transition system.� Next de�ne a funtionns stm :: (env V, env P) -> onfig P -> onfig Porresponding to the transition relation!.Finally de�ne a funtions ns :: stm -> store -> storethat alls ns stm with appropriately initialized environments. Use the funtion onvarious example statements in order to ensure that the implementation works asintended. 2Exerise C.8 Modify the implementation above to use dynami sope rules forvariable delarations as well as proedure delarations. 2It is more problemati to extend the implementation to handle the onstrutsof Setion 2.4:Exerise C.9 Disuss how to extend the implementation of the natural semantisin Setion C.1 to inorporate the onstruts onsidered in Setion 2.4. 2Exerise C.10 Disuss how to extend the implementation of the strutural oper-ational semantis of Setion C.2 to inorporate the onstruts onsidered in Setion2.4. 2C.4 Provably orret implementationRather than presenting a fully worked out Miranda sript we shall provide exer-ises showing how to develop an implementation orresponding to Chapter 3.Exerise C.11 We need some data types to represent the on�gurations of themahine:� De�ne an algebrai data type am ins for representing instrutions and de�nethe type synonym

228 C Operational Semantis in Mirandaam ode == [am ins℄for representing ode.� De�ne an algebrai data type stak values representing the elements thatmay be on the evaluation stak and de�ne the type synonymstak == [stak values℄� De�ne a type storage representing the storage.Finally de�neam onfig == (am ode, stak, storage)for the on�gurations of AM. 2Exerise C.12 We an then turn to the semantis of the mahine instrutions.For this we proeed in three stages:� First de�ne a funtion am step of typeam step :: am onfig -> am onfigimplementing Table 3.1.� We shall also be interested in the omputation sequenes of AM so de�ne afuntionam omp seq :: am ode -> storage -> [am onfig℄that given a sequene of instrutions and an initial storage will onstrut theorresponding omputation sequene.� Finally de�ne a funtion run orresponding to the funtionM of Chapter 3.This provides us with an interpreter for AM. What happens if we enter a stukon�guration? 2Exerise C.13 Finally, we implement the ode generation funtions:� De�ne funtions orresponding to CA, CB and CS.� De�ne a funtion am stm orresponding to the funtion Sam.Apply the onstrution to a ouple of examples to verify that everything works asexpeted. 2Exerise C.14 Modify the implementation to use the abstrat mahine AM2 ofExerises 3.8 and 3.17 rather than AM. 2

Appendix DDenotational Semantis inMirandaIn this appendix we implement the denotational semantis of Chapter 4 in Mi-randa and show how similar tehniques an be used to implement the statiprogram analysis of Chapter 5.We shall need the de�nitions from Appendix B so we begin by inluding these:> %inlude "appB"D.1 Diret style semantisIn the implementation we shall rely on some of the built-in funtions ofMiranda.In partiular, id is the identity funtion and `.' is funtion omposition. Theauxiliary funtion ond is de�ned by> ond (p, g1, g2) s = g1 s, if p s> = g2 s, if ~p sThe theoretial foundation of Miranda is losely related to the theory developedin Chapter 4 (although it is outside the sope of this book to go further intothis). One of the onsequenes of this is that the �xed point operation an beimplemented in a very simple way:> fix ff = ff (fix ff)The funtion Sds an now be implemented by the funtion> s ds :: stm -> state -> stateA straightforward rewriting of Table 4.1 gives:229

230 D Denotational Semantis in Miranda> s ds (Ass x a) s = update s (a val a s) x> where> update s v x y = v, if x = y> = s y, otherwise> s ds Skip = id> s ds (Comp ss1 ss2) = (s ds ss2) . (s ds ss1)> s ds (If b ss1 ss2) = ond (b val b, s ds ss1, s ds ss2)> s ds (While b ss) = fix ff> where> ff g = ond (b val b, g . s ds ss, id)Example D.1 Returning to the fatorial statement we an apply its denotationto the initial state s init as follows:> s final = s ds fatorial s init 2Exerise D.2 We may be interested in the various iterands of the �xed point.Rewrite the semanti equations above so that eah �xed point is unfolded at most ntimes where n is an additional parameter to the funtions. Give examples showingthat if the value of n is suÆiently large then we get the same result as above. 2Exerise D.3 Extend the de�nition above to handle the repeat-onstrut. 2D.2 Extensions of WhileIt is fairly straightforward to extend the implementation to handle the proedurelanguage and the exeption language of Setion 4.5.Exerise D.4 Modify the above implementation to use environments and storesand extend it to implement the semantis of the language Pro of Setion 4.5. 2Exerise D.5 Modify the above implementation to use ontinuations and extendit to handle the language Ex of Setion 4.5. 2D.3 Stati program analysisRather than presenting a fully worked out Miranda sript performing the depen-deny analysis we shall provide a rather detailed list of instrutions for how todevelop suh an implementation.

D.3 Stati program analysis 231Exerise D.6 The �rst step will be to implement the omplete latties P andPState and the operations on them:� De�ne an algebrai data type property representing the set P of propertiesand de�ne a funtion p lub orresponding to tP.� De�ne a type synonym pstate representing the property states. De�nethe speial property states init and lost. De�ne a funtion pstate luborresponding to tPS. 2Exerise D.7 We an then turn to the semanti equations de�ning the analysis:� De�ne the funtionsp aexp :: aexp -> pstate -> propertyorresponding to PA andp bexp :: bexp -> pstate -> propertyorresponding to PB.� De�ne the auxiliary funtion ond P orresponding to ondP.� De�ne the funtionp stm :: stm -> pstate -> pstateorresponding to PS of Table 5.2. (You may use the results of Setion 5.4for this.) 2Exerise D.8 Implement the algorithm of Setion 5.2 and apply the implemen-tation to a ouple of examples to verify that everything works as expeted. 2

232 D Denotational Semantis in Miranda

Bibliography[1℄ S. Abramsky, C. Hankin: Abstrat Interpretation of Delarative Languages,Ellis Horwood (1987).[2℄ A. V. Aho, J. E. Hoproft, J. D. Ullman: Data Strutures and Algorithms,Addison{Wesley (1982).[3℄ A. V. Aho, R. Sethi, J. D. Ullman: Compilers: Priniples, Tehniques andTools, Addison{Wesley (1986).[4℄ K. R. Apt: Ten Years of Hoare's Logi: A Survey | Part 1, ACM Toplas 34 (1981).[5℄ J. W. de Bakker: Mathematial Theory of Program Corretness, Prentie-Hall(1980).[6℄ D. Cl�ement, J. Despeyroux, T. Despeyroux, G. Kahn: A simple appliativelanguage: Mini-ML, Proeedings of the 1986 ACM Conferene on Lisp andFuntional Programming (1986).[7℄ J. Despeyroux: Proof of translation in natural semantis, Proeedings ofSymposium on Logi in Computer Siene, Cambridge, Massahusetts, USA(1986).[8℄ M. J. C. Gordon: The Denotational Desription of Programming Languages,An Introdution, Springer-Verlag (1979).[9℄ M. Hennessy: The Semantis of Programming Languages: An ElementaryIntrodution using Strutural Operational Semantis, Wiley (1991).[10℄ C. B. Jones: Software Development: A Rigorous Approah, Prentie-Hall(1980).[11℄ J. Loekx, K. Sieber: The Foundations of Program Veri�ation, Wiley{Teubner Series in Computer Siene (1984).[12℄ H. R. Nielson: A Hoare-like proof system for run-time analysis of programs,Siene of Computer Programming, vol 9 (1987).233

234 Bibliography[13℄ F. Nielson, H. R. Nielson: Two-level semantis and ode generation, Theoret-ial Computer Siene, vol 56 (1988).[14℄ G. D. Plotkin: A Strutural approah to Operational Semantis, Leture notes,DAIMI FN-19, Aarhus University, Denmark (1981, reprinted 1991).[15℄ G. D. Plotkin: An operational semantis for CSP, in: Formal Desription ofProgramming Conepts II, Proeedings of TC-2 Work. Conf. (ed. D. Bj�rner),North{Holland (1982).[16℄ D. A. Shmidt: Denotational Semantis: a Methodology for Language Devel-opment, Allyn & Baon, In. (1986).[17℄ J. E. Stoy: Denotational Semantis: The Sott{Strahey Approah to Pro-gramming Language Theory, MIT Press (1977).

Index of Symbols(P, vP), 136(PState, vPS), 140(PState ! PState, v), 148(State ,! State, v), 93(D , vD), 95� � �[� � �7�!� � �℄, 51� � �[� � �7!� � �℄, 16, 17, 177, 214� � �� � � �rel � � �, 137, 138� � �` � � �! � � �, 54, 58Æ, 214�, 215,!, 213!, 213�, 64), 32!, 20!t, 202!D, 51, 58!Aexp, 31!Bexp, 32t, 136F, 97, 99, 136, 140, 148?, 95v, 95, 136, 140, 148w, 95`, 180, 192, 203j=, 184, 191, 203:, 177_, 177^, 177), 177f P g S f Q g, 176f P g S f + Q g, 191f P g S f e + Q g, 202

f n, 104R�, 215R+, 215A, 12B, 14CA, 70CB, 70CS, 71DPds, 121DVds, 120M, 68N , 9O(g), 214P, 213PA, 142PAX , 161PB, 142PBX , 161PS, 144PSX , 161Sam, 72Ss, 130S 0s, 128Sds, 85, 122S 0ds, 119Sns, 31Ssos, 39T A, 201T B, 201AM, 63Aexp, 7AexpX , 161Bexp, 7235

236 Index of SymbolsBexpX , 161Blok, 51Code, 64Cont, 127DeP, 53, 117DeV, 51, 117EnvE, 130EnvP, 54, 56, 58, 121EnvV, 57, 118Ex, 126Exeption, 126�, 213Lo, 57, 118N, 213Num, 7P, 136PState, 137Pname, 53, 117Pro, 52, 117Stak, 64State, 12StateX , 161Stm, 7StmX , 161Store, 57, 118T, 213tt, 213Var, 7While, 6Z, 213a, 7b, 7, 64, 127DP , 53, 117DV , 51, 117e, 64, 126envE, 130envP , 54, 121

envV , 57, 118n, 7P , 176p, 53, 117, 136ps, 137S , 7s, 12sto, 57, 118Q , 176x , 7d?, 135, 136init, 141initX , 163lost, 141ok, 135ond, 87, 119ondP, 145DV, 51extendX , 161FIX, 88, 97, 104, 146FV, 15, 16, 160graph, 214I, 215Ip, 215IX , 215id, 214lookup, 118new, 57, 118next, 57, 118OK, 137on-trak, 137updP, 54, 56, 58wlp, 186rel, 136{138undef, 214

Indexabort-onstrut, 44abstrat mahine, 63abstrat syntax, 7additive funtion, 163admissible prediate, 173anti-symmetri relation, 95arithmeti expression, 7analysis, 142exeution time, 201semantis, 12translation, 70assert-onstrut, 46assertion, 175axiom, 20axiomati semantis, 178basis element, 7begin-onstrut, 51, 117, 126bisimulation relation, 81boolean expression, 7analysis, 142exeution time, 201semantis, 14translation, 70all-onstrut, 53, 117, 197all-by-value parameter, 60, 126po, 99hain, 97hain omplete partially ordered set,99ode generation, 69omplete lattie, 99ompleteness, 183

of partial orretness inferene sys-tem, 187of total orretness inferene sys-tem, 196omposite element, 7ompositional de�nition, 11omputation sequene, 66onrete syntax, 7on�guration, 216�nal, 216stuk, 216terminal, 216onstant propagation, 133ontinuation, 127ontinuation style semantis, 127ontinuous funtion, 103orret implementation, 73delared variable, 51denotational semantis, 85ontinuation style, 127diret style, 85dependeny analysis, 134derivation sequene, 33derivation tree, 22detetion of signs analysis, 133deterministi semantis, 28, 38, 68diret style semantis, 85dubious, 135dynami sope, 53equivalene relation, 141evaluation stak, 64exeption, 126exeption environment, 130237

238 Indexexpressiveness, 191extensional approah, 177�xed point, 87least, 97, 104requirements, 92, 97�xed point indution, 173�xed point theory, 106ow of ontrol, 137for-onstrut, 28, 36, 43, 72, 111, 117,151, 182free variable, 15, 16, 160funtion omposition, 214funtional dependeny, 134graph of a funtion, 214handle-onstrut, 126identity funtion, 214identity relation, 215indution, 10�xed point, 173on the length of omputation se-quenes, 67on the length of derivation sequenes,37on the shape of derivation trees,28on the shape of inferene trees,183strutural, 11inferene system, 178for exeution time, 200for partial orretness, 178for total orretness, 191inferene tree, 180injetive funtion, 214input variable, 134instrutions, 64intensional approah, 177, 190invariant, 179, 192Kripke-relation, 141

least element, 95least �xed point, 97, 104least upper bound, 97loal variable, 51loation, 57, 118logial variable, 176looping omputation sequene, 66looping exeution, 25, 36monotone funtion, 100mutual reursive proedure, 60natural semantis, 20non-determinism, 46, 197non-reursive proedure, 56, 122, 197number, 9numeral, 7, 11or-onstrut, 46, 197order of magnitude, 214order of magnitude of exeution time,200ordering, 93anti-symmetry, 95on P, 136on PState, 140on PState ! PState, 148on State ,! State, 93reexivity, 95, 141symmetry, 141transitivity, 95, 141output variable, 134par-onstrut, 48parallelism, 48parameterized relation, 141partial orretness, 169, 175axiomati semantis, 178denotational semantis, 172natural semantis, 169strutural operational semantis,172partial funtion, 213

Index 239partially ordered set, 95postondition, 176preondition, 176prediate, 215pro-onstrut, 53, 117, 197proedure delaration, 53, 117, 121proedure environment, 54, 56, 58, 121proedure name, 53, 117program variable, 176property, 135property state, 137improper, 138proper, 138protet-onstrut, 50provability, 180in exeution time inferene system,203in partial orretness inferene sys-tem, 180in total orretness inferene sys-tem, 192provably equivalene, 182raise-onstrut, 126random-onstrut, 48reurrene equation, 205, 207reursive proedure, 54, 56, 125, 198reexive ordering, 141reexive relation, 95reexive transitive losure, 215relation, 215relation omposition, 215repeat-onstrut, 28, 30, 36, 39, 43,72, 81, 111, 112, 117, 129, 151,160, 182, 183, 186, 190, 194,196, 208rule, 20rule of onsequene, 180safety of stati analysis, 153, 159semanti lause, 9semanti equation, 9semanti equivalene, 26, 39, 112

semanti funtion, 9soundness, 183of exeution time inferene system,208of partial orretness inferene sys-tem, 184of total orretness inferene sys-tem, 194state, 12statement, 7analysis, 144exeution time, 202semantis, 31, 39, 85translation, 71stati sope, 53, 117storage, 64store, 57, 118strit funtion, 103strongest postondition, 187, 190strutural indution, 11strutural operational semantis, 32stuk on�guration, 216substitution, 16, 17, 51symmetri ordering, 141terminating omputation sequene, 66terminating exeution, 25, 36total orretness, 169axiomati semantis, 191total funtion, 213transition relation, 216transition system, 216transitive ordering, 141transitive relation, 95upper bound, 97validity, 184in exeution time inferene system,203in partial orretness inferene sys-tem, 184

240 Indexin total orretness inferene sys-tem, 191var-onstrut, 51, 117variable, 7variable delaration, 51, 117, 120variable environment, 57, 118weakest liberal preondition, 187

