
SEMANTICS WITH APPLICATIONSA Formal Introdu
tion

Hanne Riis Nielson

Flemming Nielson

The webpage http://www.daimi.au.dk/�hrn
ontainsinformation about how to download a
opy of this book (sub-je
t to the
onditions listed below).The book may be downloaded and printed free of
hargefor personal study; it may be downloaded and printed freeof
harge by instru
tors for immediate photo
opying to stu-dents provided that no fee is
harged for the
ourse; thesepermissions expli
itly ex
lude the right to any other distri-bution of the book (be it ele
troni
ally or by making physi
al
opies).All other distribution should be agreed with the authors.This is a revised edition
ompleted in July 1999; the originaledition from 1992 was published by John Wiley & Sons; thisshould be a
knowledged in all referen
es to the book.

i

Contents
List of Tables viiPrefa
e ix1 Introdu
tion 11.1 Semanti
 des
ription methods . 11.2 The example language While . 71.3 Semanti
s of expressions . 91.4 Properties of the semanti
s . 152 Operational Semanti
s 192.1 Natural semanti
s . 202.2 Stru
tural operational semanti
s . 322.3 An equivalen
e result . 402.4 Extensions of While . 442.5 Blo
ks and pro
edures . 503 Provably Corre
t Implementation 633.1 The abstra
t ma
hine . 633.2 Spe
i�
ation of the translation . 693.3 Corre
tness . 733.4 An alternative proof te
hnique . 814 Denotational Semanti
s 854.1 Dire
t style semanti
s: spe
i�
ation 854.2 Fixed point theory . 934.3 Dire
t style semanti
s: existen
e . 1074.4 An equivalen
e result . 1124.5 Extensions of While . 1175 Stati
 Program Analysis 1335.1 Properties and property states . 1355.2 The analysis . 142v

vi Contents5.3 Safety of the analysis . 1535.4 Bounded iteration . 1606 Axiomati
 Program Veri�
ation 1696.1 Dire
t proofs of program
orre
tness 1696.2 Partial
orre
tness assertions . 1756.3 Soundness and
ompleteness . 1836.4 Extensions of the axiomati
 system 1916.5 Assertions for exe
ution time . 2007 Further Reading 209A Review of Notation 213Appendi
es 212B Introdu
tion to Miranda Implementations 217B.1 Abstra
t syntax . 217B.2 Evaluation of expressions . 218C Operational Semanti
s in Miranda 221C.1 Natural semanti
s . 221C.2 Stru
tural operational semanti
s . 223C.3 Extensions of While . 225C.4 Provably
orre
t implementation 227D Denotational Semanti
s in Miranda 229D.1 Dire
t style semanti
s . 229D.2 Extensions of While . 230D.3 Stati
 program analysis . 230Bibliography 233Index of Symbols 235Index 237

List of Tables1.1 The semanti
s of arithmeti
 expressions 131.2 The semanti
s of boolean expressions 142.1 Natural semanti
s for While . 202.2 Stru
tural operational semanti
s for While 332.3 Natural semanti
s for statements of Blo
k 522.4 Natural semanti
s for variable de
larations 522.5 Natural semanti
s for Pro
 with dynami
 s
ope rules 542.6 Pro
edure
alls in
ase of mixed s
ope rules (
hoose one) 562.7 Natural semanti
s for variable de
larations using lo
ations 582.8 Natural semanti
s for Pro
 with stati
 s
ope rules 593.1 Operational semanti
s for AM . 653.2 Translation of expressions . 703.3 Translation of statements in While 714.1 Denotational semanti
s for While 864.2 Denotational semanti
s for While using lo
ations 1194.3 Denotational semanti
s for variable de
larations 1214.4 Denotational semanti
s for non-re
ursive pro
edure de
larations . . 1224.5 Denotational semanti
s for Pro
 1234.6 Denotational semanti
s for re
ursive pro
edure de
larations 1254.7 Continuation style semanti
s for While 1284.8 Continuation style semanti
s for Ex
 1305.1 Analysis of expressions . 1435.2 Analysis of statements in While 1446.1 Axiomati
 system for partial
orre
tness 1786.2 Axiomati
 system for total
orre
tness 1926.3 Exa
t exe
ution times for expressions 2026.4 Natural semanti
s for While with exa
t exe
ution times 2036.5 Axiomati
 system for order of magnitude of exe
ution time 204
vii

viii List of Tables

Prefa
eMany books on formal semanti
s begin by explaining that there are three majorapproa
hes to semanti
s, that is� operational semanti
s,� denotational semanti
s, and� axiomati
 semanti
s;but then they go on to study just one of these in greater detail. The purpose ofthis book is to� present the fundamental ideas behind all of these approa
hes,� to stress their relationship by formulating and proving the relevant theorems,and� to illustrate the appli
ability of formal semanti
s as a tool in
omputers
ien
e.This is an ambitious goal and to a
hieve it, the bulk of the development
on-
entrates on a rather small
ore language of while-programs for whi
h the threeapproa
hes are developed to roughly the same level of sophisti
ation. To demon-strate the appli
ability of formal semanti
s we show� how to use semanti
s for validating prototype implementations of program-ming languages,� how to use semanti
s for verifying analyses used in more advan
ed imple-mentations of programming languages, and� how to use semanti
s for verifying useful program properties in
luding infor-mation about exe
ution time.The development is introdu
tory as is already re
e
ted in the title. For this rea-son very many advan
ed
on
epts within operational, denotational and axiomati
semanti
s have had to be omitted. Also we have had to omit treatment of otherapproa
hes to semanti
s, for example Petri-nets and temporal logi
. Some pointersto further reading are given in Chapter 7.ix

x Prefa
e

�������
�������
�������

HHHHHHH
HHHHHHH
HHHHHHH

Chapter 1Chapter 2Se
tions 2.1{2.3Se
tions 2.4{2.5 Chapter 3Chapter 4Se
tions 4.1{4.4Se
tion 4.5 Chapter 5Chapter 6Se
tions 6.1{6.3Se
tion 6.4 Se
tion 6.5Chapter 7
OverviewAs is illustrated in the dependen
y diagram, Chapters 1, 2, 4, 6 and 7 form the
oreof the book. Chapter 1 introdu
es the example language of while-programs thatis used throughout the book. In Chapter 2 we
over two approa
hes to operationalsemanti
s, the natural semanti
s of G. Kahn and the stru
tural operational se-manti
s of G. Plotkin. Chapter 4 develops the denotational semanti
s of D. S
ottand C. Stra
hey in
luding simple �xed point theory. Chapter 6 introdu
es pro-gram veri�
ation based on operational and denotational semanti
s and goes on topresent the axiomati
 approa
h due to C. A. R. Hoare. Finally, Chapter 7
ontainssuggestions for further reading.The �rst three or four se
tions of ea
h of the Chapters 2, 4 and 6 are devotedto the language of while-programs and
overs spe
i�
ation as well as theoreti
al

Prefa
e xiaspe
ts. In ea
h of the
hapters we extend the while-language with various other
onstru
ts and the emphasis is here on spe
i�
ation rather than theory. In Se
tions2.4 and 2.5 we
onsider extensions with abortion, non-determinism, parallelism,blo
k
onstru
ts, dynami
 and stati
 pro
edures, and non-re
ursive and re
ursivepro
edures. In Se
tion 4.5 we
onsider extensions of the while-language withstati
 pro
edures that may or may not be re
ursive and we show how to handleex
eptions, that is,
ertain kinds of jumps. Finally, in Se
tion 6.4 we
onsider anextension with non-re
ursive and re
ursive pro
edures and we also show how total
orre
tness properties are handled. The se
tions on extending the operational,denotational and axiomati
 semanti
s may be studied in any order.The appli
ability of operational, denotational and axiomati
 semanti
s is illus-trated in Chapters 3, 5 and 6. In Chapter 3 we show how to prove the
orre
tnessof a simple
ompiler for the while-language using the operational semanti
s. InChapter 5 we prove an analysis for the while-language
orre
t using the denota-tional semanti
s. Finally, in Se
tion 6.5 we extend the axiomati
 approa
h so asto obtain information about exe
ution time of while-programs.Appendix A reviews the mathemati
al notation on whi
h this book is based. Itis mostly standard notation but some may �nd our use of ,! and � non-standard.We use D ,! E for the set of partial fun
tions from D to E ; this is be
ause we�nd that the D * E notation is too easily overlooked. Also we use R � S forthe
omposition of binary relations R and S ; this is be
ause of the di�erent orderof
omposition used for relations and fun
tions. When dealing with axiomati
semanti
s we use formulae f P g S f Q g for partial
orre
tness assertions butf P g S f + Q g for total
orre
tness assertions be
ause the expli
it o

urren
e of+ (for termination) may prevent the student from
onfusing the two systems.Appendi
es B, C and D
ontain implementations of some of the semanti
 spe
i-�
ations using the fun
tional languageMiranda.1 The intention is that the abilityto experiment with semanti
 de�nitions enhan
es the understanding of materialthat is often regarded as being terse and heavy with formalism. It should be pos-sible to rework these implementations in any fun
tional language but if an eagerlanguage (like Standard ML) is used, great
are must be taken in the imple-mentation of the �xed point
ombinator. However, no
ontinuity is lost if theseappendi
es are ignored.Notes for the instru
torThe reader should preferably be a
quainted with the BNF-style of spe
ifying thesyntax of programming languages and should be familiar with most of the mathe-mati
al
on
epts surveyed in Appendix A. To appre
iate the prototype implemen-tations of the appendi
es some experien
e in fun
tional programming is required.1Miranda is a trademark of Resear
h Software Limited, 23 St Augustines Road, Canterbury,Kent CT1 1XP, UK.

xii Prefa
eWe have ourselves used this book for an undergraduate
ourse at Aarhus Universityin whi
h the required fun
tional programming is introdu
ed \on-the-
y".We provide two kinds of exer
ises. One kind helps the student in his/herunderstanding of the de�nitions/results/te
hniques used in the text. In parti
ularthere are exer
ises that ask the student to prove auxiliary results needed for themain results but then the proof te
hniques will be minor variations of those alreadyexplained in the text. We have marked those exer
ises whose results are neededlater by \(Essential)". The other kind of exer
ises are more
hallenging in thatthey extend the development, for example by relating it to other approa
hes. Weuse a star to mark the more diÆ
ult of these exer
ises. Exer
ises marked by twostars are rather lengthy and may require insight not otherwise presented in thebook. It will not be ne
essary for students to attempt all the exer
ises but wedo re
ommend that they read them and try to understand what the exer
ises areabout.A
knowledgementsIn writing this book we have been greatly assisted by the
omments and sug-gestions provided by
olleagues and reviewers and by students and instru
torsat Aarhus University. This in
ludes Anders Gammelgaard, Chris Hankin, Tor-ben Amtoft Hansen, Jens Palsberg J�rgensen, Ernst-R�udiger Olderog, David A.S
hmidt, Kirsten L. Solberg and Bernhard Ste�en. Spe
ial thanks are due to Stef-fen Grarup, Ja
ob Seligmann, and Bettina Blaaberg S�rensen for their enthusiasmand great
are in reading preliminary versions.Aarhus, O
tober 1991 Hanne Riis NielsonFlemming NielsonRevised EditionIn this revised edition we have
orre
ted a number of typographi
al errors and afew mistakes; however, no major
hanges have been made. Sin
e the publi
ationof the �rst edition we have obtained helpful
omments from Jens Knoop andAnders Sandholm. The webpage for the book now also
ontains implementationsof Appendi
es B, C and D in Gofer as well as in Miranda.Aarhus, July 1999 Hanne Riis NielsonFlemming Nielson

Chapter 1Introdu
tionThe purpose of this book is� to des
ribe some of the main ideas and methods used in semanti
s,� to illustrate these on interesting appli
ations, and� to investigate the relationship between the various methods.Formal semanti
s is
on
erned with rigorously spe
ifying the meaning, or be-haviour, of programs, pie
es of hardware et
. The need for rigour arises be
ause� it
an reveal ambiguities and subtle
omplexities in apparently
rystal
learde�ning do
uments (for example programming language manuals), and� it
an form the basis for implementation, analysis and veri�
ation (in par-ti
ular proofs of
orre
tness).We will use informal set theoreti
 notation (reviewed in Appendix A) to representsemanti

on
epts. This will suÆ
e in this book but for other purposes greaternotational pre
ision (that is, formality) may be needed, for example when pro
ess-ing semanti
 des
riptions by ma
hine as in semanti
s dire
ted
ompiler-
ompilersor ma
hine assisted proof
he
kers.1.1 Semanti
 des
ription methodsIt is
ustomary to distinguish between the syntax and the semanti
s of a pro-gramming language. The syntax is
on
erned with the grammati
al stru
ture ofprograms. So a synta
ti
 analysis of the programz:=x; x:=y; y:=z 1

2 1 Introdu
tionwill realize that it
onsists of three statements separated by the symbol `;'. Ea
hof these statements has the form of a variable followed by the
omposite symbol`:=' and an expression whi
h is just a variable.The semanti
s is
on
erned with the meaning of grammati
ally
orre
t pro-grams. So it will express that the meaning of the above program is to ex
hangethe values of the variables x and y (and setting z to the �nal value of y). If wewere to explain this in more detail we would look at the grammati
al stru
ture ofthe program and use explanations of the meanings of� sequen
es of statements separated by `;', and� a statement
onsisting of a variable followed by `:=' and an expression.The a
tual explanations
an be formalized in di�erent ways. In this book we shall
onsider three approa
hes. Very roughly, the ideas are as follows:Operational semanti
s: The meaning of a
onstru
t is spe
i�ed by the
ompu-tation it indu
es when it is exe
uted on a ma
hine. In parti
ular, it is ofinterest how the e�e
t of a
omputation is produ
ed.Denotational semanti
s: Meanings are modelled by mathemati
al obje
ts thatrepresent the e�e
t of exe
uting the
onstru
ts. Thus only the e�e
t is ofinterest, not how it is obtained.Axiomati
 semanti
s: Spe
i�
 properties of the e�e
t of exe
uting the
on-stru
ts are expressed as assertions. Thus there may be aspe
ts of the exe
u-tions that are ignored.To get a feeling for their di�erent nature let us see how they express the meaningof the example program above.Operational semanti
s (Chapter 2)An operational explanation of the meaning of a
onstru
t will tell how to exe
uteit: � To exe
ute a sequen
e of statements separated by `;' we exe
ute the individ-ual statements one after the other and from left to right.� To exe
ute a statement
onsisting of a variable followed by `:=' and anothervariable we determine the value of the se
ond variable and assign it to the�rst variable.We shall re
ord the exe
ution of the example program in a state where x has thevalue 5, y the value 7 and z the value 0 by the following \derivation sequen
e":

1.1 Semanti
 des
ription methods 3hz:=x; x:=y; y:=z, [x7!5, y7!7, z7!0℄i) hx:=y; y:=z, [x7!5, y7!7, z7!5℄i) hy:=z, [x7!7, y7!7, z7!5℄i) [x7!7, y7!5, z7!5℄In the �rst step we exe
ute the statement z:=x and the value of z is
hangedto 5 whereas those of x and y are un
hanged. The remaining program is nowx:=y; y:=z. After the se
ond step the value of x is 7 and we are left with theprogram y:=z. The third and �nal step of the
omputation will
hange the valueof y to 5. Therefore the initial values of x and y have been ex
hanged, using z asa temporary variable.This explanation gives an abstra
tion of how the program is exe
uted on ama
hine. It is important to observe that it is indeed an abstra
tion: we ignoredetails like use of registers and addresses for variables. So the operational semanti
sis rather independent of ma
hine ar
hite
tures and implementation strategies.In Chapter 2 we shall formalize this kind of operational semanti
s whi
h is often
alled stru
tural operational semanti
s (or small-step semanti
s). An alternativeoperational semanti
s is
alled natural semanti
s (or big-step semanti
s) and di�ersfrom the stru
tural operational semanti
s by hiding even more exe
ution details.In the natural semanti
s the exe
ution of the example program in the same stateas before will be represented by the following \derivation tree":hz:=x, s0i ! s1 hx:=y, s1i ! s2hz:=x; x:=y, s0i ! s2 hy:=z, s2i ! s3hz:=x; x:=y; y:=z, s0i ! s3where we have used the abbreviations:s0 = [x7!5, y7!7, z7!0℄s1 = [x7!5, y7!7, z7!5℄s2 = [x7!7, y7!7, z7!5℄s3 = [x7!7, y7!5, z7!5℄This is to be read as follows: The exe
ution of z:=x in the state s0 will result inthe state s1 and the exe
ution of x:=y in state s1 will result in state s2. Thereforethe exe
ution of z:=x; x:=y in state s0 will give state s2. Furthermore, exe
utionof y:=z in state s2 will give state s3 so in total the exe
ution of the program instate s0 will give the resulting state s3. This is expressed byhz:=x; x:=y; y:=z, s0i ! s3

4 1 Introdu
tionbut now we have hidden the above explanation of how it was a
tually obtained.In Chapter 3 we shall use the natural semanti
s as the basis for proving the
orre
tness of an implementation of a simple programming language.Denotational semanti
s (Chapter 4)In the denotational semanti
s we
on
entrate on the e�e
t of exe
uting the pro-grams and we shall model this by mathemati
al fun
tions:� The e�e
t of a sequen
e of statements separated by `;' is the fun
tional
omposition of the e�e
ts of the individual statements.� The e�e
t of a statement
onsisting of a variable followed by `:=' and anothervariable is the fun
tion that given a state will produ
e a new state: it is asthe original one ex
ept that the value of the �rst variable of the statementis equal to that of the se
ond variable.For the example program we obtain fun
tions written S[[z:=x℄℄, S[[x:=y℄℄, andS[[y:=z℄℄ for ea
h of the assignment statements and for the overall program weget the fun
tionS[[z:=x; x:=y; y:=z℄℄ = S[[y:=z℄℄ Æ S[[x:=y℄℄ Æ S[[z:=x℄℄Note that the order of the statements have
hanged be
ause we use the usualnotation for fun
tion
omposition where (f Æ g) s means f (g s). If we want todetermine the e�e
t of exe
uting the program on a parti
ular state then we
anapply the fun
tion to that state and
al
ulate the resulting state as follows:S[[z:=x; x:=y; y:=z℄℄([x7!5, y7!7, z7!0℄)= (S[[y:=z℄℄ Æ S[[x:=y℄℄ Æ S[[z:=x℄℄)([x7!5, y7!7, z7!0℄)= S[[y:=z℄℄(S[[x:=y℄℄(S[[z:=x℄℄([x7!5, y7!7, z7!0℄)))= S[[y:=z℄℄(S[[x:=y℄℄([x7!5, y7!7, z7!5℄))= S[[y:=z℄℄([x7!7, y7!7, z7!5℄)= [x7!7, y7!5, z7!5℄Note that we are only manipulating mathemati
al obje
ts; we are not
on
ernedwith exe
uting programs. The di�eren
e may seem small for a program with onlyassignment and sequen
ing statements but for programs with more sophisti
ated
onstru
ts it is substantial. The bene�ts of the denotational approa
h are mainlydue to the fa
t that it abstra
ts away from how programs are exe
uted. Thereforeit be
omes easier to reason about programs as it simply amounts to reasoningabout mathemati
al obje
ts. However, a prerequisite for doing so is to establish a

1.1 Semanti
 des
ription methods 5�rm mathemati
al basis for denotational semanti
s and this task turns out not tobe entirely trivial.The denotational approa
h
an easily be adapted to express other sorts ofproperties of programs. Some examples are:� Determine whether all variables are initialized before they are used | if nota warning may be appropriate.� Determine whether a
ertain expression in the program always evaluates toa
onstant | if so one
an repla
e the expression by the
onstant.� Determine whether all parts of the program are rea
hable | if not they
ouldas well be removed or a warning might be appropriate.In Chapter 5 we develop an example of this.While we prefer the denotational approa
h when reasoning about programs wemay prefer an operational approa
h when implementing the language. It is there-fore of interest whether a denotational de�nition is equivalent to an operationalde�nition and this is studied in Se
tion 4.3.Axiomati
 semanti
s (Chapter 6)Often one is interested in partial
orre
tness properties of programs: A program ispartially
orre
t, with respe
t to a pre
ondition and a post
ondition, if wheneverthe initial state ful�ls the pre
ondition and the program terminates, then the �nalstate is guaranteed to ful�l the post
ondition. For our example program we havethe partial
orre
tness property:f x=n ^ y=m g z:=x; x:=y; y:=z f y=n ^ x=m gwhere x=n ^ y=m is the pre
ondition and y=n ^ x=m is the post
ondition. Thenames n and m are used to \remember" the initial values of x and y, respe
tively.The state [x7!5, y7!7, z7!0℄ satis�es the pre
ondition by taking n=5 and m=7 andwhen we have proved the partial
orre
tness property we
an dedu
e that if theprogram terminates then it will do so in a state where y is 5 and x is 7. However,the partial
orre
tness property does not ensure that the program will terminatealthough this is
learly the
ase for the example program.The axiomati
 semanti
s provides a logi
al system for proving partial
orre
t-ness properties of individual programs. A proof of the above partial
orre
tnessproperty may be expressed by the following \proof tree":

6 1 Introdu
tion
f p0 g z:=x f p1 g f p1 g x:=y f p2 gf p0 g z:=x; x:=y f p2 g f p2 g y:=z f p3 gf p0 g z:=x; x:=y; y:=z f p3 gwhere we have used the abbreviationsp0 = x=n ^ y=mp1 = z=n ^ y=mp2 = z=n ^ x=mp3 = y=n ^ x=mWe may view the logi
al system as a spe
i�
ation of only
ertain aspe
ts of thesemanti
s. It usually does not
apture all aspe
ts for the simple reason that all thepartial
orre
tness properties listed below
an be proved using the logi
al systembut
ertainly we would not regard the programs as behaving in the same way:f x=n ^ y=m g z:=x; x:=y; y:=z f y=n ^ x=m gf x=n ^ y=m g if x=y then skip else (z:=x; x:=y; y:=z) f y=n ^ x=m gf x=n ^ y=m g while true do skip f y=n ^ x=m gThe bene�ts of the axiomati
 approa
h are that the logi
al systems provide an easyway of proving properties of programs | and to a large extent it has been possibleto automate it. Of
ourse this is only worthwhile if the axiomati
 semanti
s isfaithful to the \more general" (denotational or operational) semanti
s we have inmind and we shall dis
uss this in Se
tion 6.3.The
omplementary viewIt is important to note that these kinds of semanti
s are not rival approa
hes, butare di�erent te
hniques appropriate for di�erent purposes and | to some extent |for di�erent programming languages. To stress this, the development will addressthe following issues:� It will develop ea
h of the approa
hes for a simple language of while-programs.� It will illustrate the power and weakness of ea
h of the approa
hes by ex-tending the while-language with other programming
onstru
ts.� It will prove the relationship between the approa
hes for the while-language.

1.2 The example language While 7� It will give examples of appli
ations of the semanti
 des
riptions in order toillustrate their merits.1.2 The example language WhileThis book illustrates the various forms of semanti
s on a very simple imperativeprogramming language
alled While. As a �rst step we must spe
ify its syntax.The synta
ti
 notation we use is based on BNF. First we list the various synta
-ti

ategories and give a meta-variable that will be used to range over
onstru
ts ofea
h
ategory. For our language the meta-variables and
ategories are as follows:n will range over numerals, Num,x will range over variables, Var,a will range over arithmeti
 expressions, Aexp,b will range over boolean expressions, Bexp, andS will range over statements, Stm.The meta-variables
an be primed or subs
ripted. So, for example, n, n 0, n1, n2all stand for numerals.We assume that the stru
ture of numerals and variables is given elsewhere; forexample numerals might be strings of digits, and variables strings of letters anddigits starting with a letter. The stru
ture of the other
onstru
ts is:a ::= n j x j a1 + a2 j a1 ? a2 j a1 � a2b ::= true j false j a1 = a2 j a1 � a2 j :b j b1 ^ b2S ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do SThus, a boolean expression b
an only have one of six forms. It is
alled a basiselement if it is true or false or has the form a1 = a2 or a1 � a2 where a1 and a2are arithmeti
 expressions. It is
alled a
omposite element if it has the form :bwhere b is a boolean expression, or the form b1 ^ b2 where b1 and b2 are booleanexpressions. Similar remarks apply to arithmeti
 expressions and statements.The spe
i�
ation above de�nes the abstra
t syntax of While in that it simplysays how to build arithmeti
 expressions, boolean expressions and statements inthe language. One way to think of the abstra
t syntax is as spe
ifying the parsetrees of the language and it will then be the purpose of the
on
rete syntax toprovide suÆ
ient information that enable unique parse trees to be
onstru
ted.So given the string of
hara
ters:z:=x; x:=y; y:=z

8 1 Introdu
tionthe
on
rete syntax of the language must be able to resolve whi
h of the twoabstra
t syntax trees below it is intended to represent: SS ; S���� ����S ; S���� SSSS
z := ax

���� AAAA x := ay
���� AAAA y := az

���� AAAA
S����S����z :=AAAAax
;���� S���� Sx := ay
���� AAAA ;SSSSS y := az

���� AAAA
In this book we shall not be
on
erned with
on
rete syntax. Whenever we talkabout synta
ti
 entities su
h as arithmeti
 expressions, boolean expressions orstatements we will always be talking about the abstra
t syntax so there is noambiguity with respe
t to the form of the entity. In parti
ular, the two treesabove are both elements of the synta
ti

ategory Stm.It is rather
umbersome to use the graphi
al representation of abstra
t syntaxand we shall therefore use a linear notation. So we shall writez:=x; (x:=y; y:=z)for the leftmost syntax tree and(z:=x; x:=y); y:=zfor the rightmost one. For statements one often writes the bra
kets as begin � � �end but we shall feel free to use (� � �) in this book. Similarly, we use bra
kets(� � �) to resolve ambiguities for elements in the other synta
ti

ategories. To
utdown on the number of bra
kets needed we shall allow to use the familiar relativebinding powers (pre
eden
es) of +, ? and � et
. and so write 1+x?2 for 1+(x?2)but not for (1+x)?2.Exer
ise 1.1 The following statement is in While:y:=1; while :(x=1) do (y:=y?x; x:=x�1)It
omputes the fa
torial of the initial value bound to x (provided that it is positive)and the result will be the �nal value of y. Draw a graphi
al representation of theabstra
t syntax tree. 2

1.3 Semanti
s of expressions 9Exer
ise 1.2 Assume that the initial value of the variable x is n and that theinitial value of y is m. Write a statement in While that assigns z the value of nto the power of m, that isn ? � � � ? n| {z }m timesGive a linear as well as a graphi
al representation of the abstra
t syntax. 2The semanti
s of While is given by de�ning so-
alled semanti
 fun
tions forea
h of the synta
ti

ategories. The idea is that a semanti
 fun
tion takes asynta
ti
 entity as argument and returns its meaning. The operational, denota-tional and axiomati
 approa
hes mentioned earlier will be used to spe
ify semanti
fun
tions for the statements of While. For numerals, arithmeti
 expressions andboolean expressions the semanti
 fun
tions are spe
i�ed on
e and for all below.1.3 Semanti
s of expressionsBefore embarking on spe
ifying the semanti
s of the arithmeti
 and boolean ex-pressions of While let us have a brief look at the numerals; this will present themain ingredients of the approa
h in a very simple setting. So assume for the mo-ment that the numerals are in the binary system. Their abstra
t syntax
ouldthen be spe
i�ed by:n ::= 0 j 1 j n 0 j n 1In order to determine the number represented by a numeral we shall de�ne afun
tionN : Num ! ZThis is
alled a semanti
 fun
tion as it de�nes the semanti
s of the numerals. Wewant N to be a total fun
tion be
ause we want to determine a unique numberfor ea
h numeral of Num. If n 2 Num then we write N [[n℄℄ for the appli
ationof N to n, that is for the
orresponding number. In general, the appli
ation ofa semanti
 fun
tion to a synta
ti
 entity will be written within the \synta
ti
"bra
kets `[[' and `℄℄' rather than the more usual `(' and `)'. These bra
kets have nospe
ial meaning but throughout this book we shall en
lose synta
ti
 arguments tosemanti
 fun
tions using the \synta
ti
" bra
kets whereas we use ordinary bra
kets(or juxtapositioning) in all other
ases.The semanti
 fun
tion N is de�ned by the following semanti

lauses (or equa-tions):

10 1 Introdu
tionN [[0℄℄ = 0N [[1℄℄ = 1N [[n 0℄℄ = 2 ? N [[n℄℄N [[n 1℄℄ = 2 ? N [[n℄℄ + 1Here 0 and 1 are numbers, that is elements of Z. Furthermore, ? and + are theusual arithmeti
 operations on numbers. The above de�nition is an example of a
ompositional de�nition; this means that for ea
h possible way of
onstru
ting anumeral it tells how the
orresponding number is obtained from the meanings ofthe sub
onstru
ts.Example 1.3 We
an
al
ulate the number N [[101℄℄
orresponding to the numeral101 as follows:N [[101℄℄ = 2 ? N [[10℄℄ + 1= 2 ? (2 ? N [[1℄℄) + 1= 2 ? (2 ? 1) + 1= 5Note that the string 101 is de
omposed a

ording to the syntax for numerals. 2So far we have only
laimed that the de�nition of N gives rise to a well-de�nedtotal fun
tion. We shall now present a formal proof showing that this is indeedthe
ase.Fa
t 1.4 The above equations for N , de�ne a total fun
tion N : Num ! Z.Proof: We have a total fun
tion N , if for all arguments n 2 Numthere is exa
tly one number n 2 Z su
h that N [[n℄℄ = n (*)Given a numeral n it
an have one of four forms: it
an be a basis element andthen it is equal to 0 or 1, or it
an be a
omposite element and then it is equal ton 00 or n 01 for some other numeral n 0. So, in order to prove (*) we have to
onsiderall four possibilities.The proof will be
ondu
ted by indu
tion on the stru
ture of the numeral n.In the base
ase we prove (*) for the basis elements of Num, that is for the
aseswhere n is 0 or 1. In the indu
tion step we
onsider the
omposite elements ofNum, that is the
ases where n is n 00 or n 01. The indu
tion hypothesis will thenallow us to assume that (*) holds for the immediate
onstituent of n, that is n 0.We shall then prove that (*) holds for n. It then follows that (*) holds for all

1.3 Semanti
s of expressions 11numerals n be
ause any numeral n
an be
onstru
ted in that way.The
ase n = 0: Only one of the semanti

lauses de�ning N
an be used and itgives N [[n℄℄ = 0. So
learly there is exa
tly one number n in Z (namely 0) su
hthat N [[n℄℄ = n.The
ase n = 1 is similar and we omit the details.The
ase n = n 00: Inspe
tion of the
lauses de�ning N shows that only one ofthe
lauses is appli
able and we have N [[n℄℄ = 2 ? N [[n 0℄℄. We
an now applythe indu
tion hypothesis to n 0 and get that there is exa
tly one number n0 su
hthat N [[n 0℄℄ = n0. But then it is
lear that there is exa
tly one number n (namely2 ? n0) su
h that N [[n℄℄ = n.The
ase n = n 01 is similar and we omit the details. 2The general te
hnique that we have applied in the de�nition of the syntax andsemanti
s of numerals
an be summarized as follows:Compositional De�nitions1: The synta
ti

ategory is spe
i�ed by an abstra
t syntax giving the basiselements and the
omposite elements. The
omposite elements have aunique de
omposition into their immediate
onstituents.2: The semanti
s is de�ned by
ompositional de�nitions of a fun
tion: Thereis a semanti

lause for ea
h of the basis elements of the synta
ti

ategoryand one for ea
h of the methods for
onstru
ting
omposite elements. The
lauses for
omposite elements are de�ned in terms of the semanti
s of theimmediate
onstituents of the elements.The proof te
hnique we have applied is
losely
onne
ted with the approa
h tode�ning semanti
 fun
tions. It
an be summarized as follows:Stru
tural Indu
tion1: Prove that the property holds for all the basis elements of the synta
ti

ategory.2: Prove that the property holds for all the
omposite elements of the syn-ta
ti

ategory: Assume that the property holds for all the immediate
onstituents of the element (this is
alled the indu
tion hypothesis) andprove that it also holds for the element itself.In the remainder of this book we shall assume that numerals are in de
imalnotation and have their normal meanings (so for example N [[137℄℄ = 137 2 Z). It

12 1 Introdu
tionis important to understand, however, that there is a distin
tion between numerals(whi
h are synta
ti
) and numbers (whi
h are semanti
), even in de
imal notation.Semanti
 fun
tionsThe meaning of an expression depends on the values bound to the variables thato

ur in it. For example, if x is bound to 3 then the arithmeti
 expression x+1evaluates to 4 but if x is bound to 2 then the expression evaluates to 3. We shalltherefore introdu
e the
on
ept of a state: to ea
h variable the state will asso
iateits
urrent value. We shall represent a state as a fun
tion from variables to values,that is an element of the setState = Var ! ZEa
h state s spe
i�es a value, written s x , for ea
h variable x of Var. Thus ifs x = 3 then the value of x+1 in state s is 4.A
tually, this is just one of several representations of the state. Some otherpossibilities are to use a table:x 5y 7z 0or a \list" of the form[x7!5, y7!7, z7!0℄(as in Se
tion 1.1). In all
ases we must ensure that exa
tly one value is asso
iatedwith ea
h variable. By requiring a state to be a fun
tion this is trivially ful�lledwhereas for the alternative representations above extra restri
tions have to beenfor
ed.Given an arithmeti
 expression a and a state s we
an determine the value ofthe expression. Therefore we shall de�ne the meaning of arithmeti
 expressionsas a total fun
tion A that takes two arguments: the synta
ti

onstru
t and thestate. The fun
tionality of A isA: Aexp ! (State ! Z)This means that A takes its parameters one at a time. So we may supply A withits �rst parameter, say x+1, and study the fun
tion A[[x+1℄℄. It has fun
tionalityState ! Z and only when we supply it with a state (whi
h happens to be afun
tion but that does not matter) do we obtain the value of the expression x+1.Assuming the existen
e of the fun
tionN de�ning the meaning of numerals, we
an de�ne the fun
tion A by de�ning its value A[[a℄℄s on ea
h arithmeti
 expression

1.3 Semanti
s of expressions 13A[[n℄℄s = N [[n℄℄A[[x ℄℄s = s xA[[a1 + a2℄℄s = A[[a1℄℄s + A[[a2℄℄sA[[a1 ? a2℄℄s = A[[a1℄℄s ? A[[a2℄℄sA[[a1 � a2℄℄s = A[[a1℄℄s � A[[a2℄℄sTable 1.1: The semanti
s of arithmeti
 expressionsa and state s. The de�nition of A is given in Table 1.1. The
lause for n re
e
tsthat the value of n in any state is N [[n℄℄. The value of a variable x in state s is thevalue bound to x in s, that is s x . The value of the
omposite expression a1+a2in s is the sum of the values of a1 and a2 in s. Similarly, the value of a1 ? a2 in sis the produ
t of the values of a1 and a2 in s, and the value of a1 � a2 in s is thedi�eren
e between the values of a1 and a2 in s. Note that + , ? and � o

urringon the right of these equations are the usual arithmeti
 operations, whilst on theleft they are just pie
es of syntax; this is analogous to the distin
tion betweennumerals and numbers but we shall not bother to use di�erent symbols.Example 1.5 Suppose that s x = 3. Then:A[[x+1℄℄s = A[[x℄℄s + A[[1℄℄s= (s x) + N [[1℄℄= 3 + 1= 4Note that here 1 is a numeral (en
losed in the bra
kets `[[' and `℄℄') whereas 1 is anumber. 2Example 1.6 Suppose we add the arithmeti
 expression � a to our language. Ana

eptable semanti

lause for this
onstru
t would beA[[� a℄℄s = 0 � A[[a℄℄swhereas the alternative
lause A[[� a℄℄s = A[[0 � a℄℄s would
ontradi
t the
om-positionality requirement. 2Exer
ise 1.7 Prove that the equations of Table 1.1 de�ne a total fun
tion Ain Aexp ! (State ! Z): First argue that it is suÆ
ient to prove that forea
h a 2 Aexp and ea
h s 2 State there is exa
tly one value v 2 Z su
h thatA[[a℄℄s = v. Next use stru
tural indu
tion on the arithmeti
 expressions to provethat this is indeed the
ase. 2

14 1 Introdu
tionB[[true℄℄s = ttB[[false℄℄s = �B[[a1 = a2℄℄s = 8<: tt if A[[a1℄℄s = A[[a2℄℄s� if A[[a1℄℄s 6= A[[a2℄℄sB[[a1 � a2℄℄s = 8<: tt if A[[a1℄℄s � A[[a2℄℄s� if A[[a1℄℄s > A[[a2℄℄sB[[: b℄℄s = 8<: tt if B[[b℄℄s = �� if B[[b℄℄s = ttB[[b1 ^ b2℄℄s = 8<: tt if B[[b1℄℄s = tt and B[[b2℄℄s = tt� if B[[b1℄℄s = � or B[[b2℄℄s = �Table 1.2: The semanti
s of boolean expressionsThe values of boolean expressions are truth values so in a similar way we shallde�ne their meanings by a (total) fun
tion from State to T:B: Bexp ! (State ! T)Here T
onsists of the truth values tt (for true) and � (for false).Using A we
an de�ne B by the semanti

lauses of Table 1.2. Again we havethe distin
tion between syntax (e.g. � on the left-hand side) and semanti
s (e.g.� on the right-hand side).Exer
ise 1.8 Assume that s x = 3 and determine B[[:(x = 1)℄℄s. 2Exer
ise 1.9 Prove that the equations of Table 1.2 de�ne a total fun
tion B inBexp ! (State ! T). 2Exer
ise 1.10 The synta
ti

ategory Bexp0 is de�ned as the following extensionof Bexp:b ::= true j false j a1 = a2 j a1 6= a2 j a1 � a2 j a1 � a2j a1 < a2 j a1 > a2 j :b j b1 ^ b2 j b1 _ b2j b1) b2 j b1 , b2Give a
ompositional extension of the semanti
 fun
tion B of Table 1.2.Two boolean expressions b1 and b2 are equivalent if for all states s,B[[b1℄℄s = B[[b2℄℄sShow that for ea
h b 0 of Bexp0 there exists a boolean expression b of Bexp su
hthat b 0 and b are equivalent. 2

1.4 Properties of the semanti
s 151.4 Properties of the semanti
sLater in the book we shall be interested in two kinds of properties for expressions.One is that their values do not depend on values of variables that do not o

urin them. The other is that if we repla
e a variable with an expression then we
ould as well have made a similar
hange in the state. We shall formalize theseproperties below and prove that they do hold.Free variablesThe free variables of an arithmeti
 expression a is de�ned to be the set of variableso

urring in it. Formally, we may give a
ompositional de�nition of the subsetFV(a) of Var:FV(n) = ;FV(x) = f x gFV(a1 + a2) = FV(a1) [FV(a2)FV(a1 ? a2) = FV(a1) [FV(a2)FV(a1 � a2) = FV(a1) [FV(a2)As an example FV(x+1) = f x g and FV(x+y?x) = f x, y g. It should be obviousthat only the variables in FV(a) may in
uen
e the value of a. This is formallyexpressed by:Lemma 1.11 Let s and s 0 be two states satisfying that s x = s 0 x for all x inFV(a). Then A[[a℄℄s = A[[a℄℄s 0.Proof:We shall give a fairly detailed proof of the lemma using stru
tural indu
tionon the arithmeti
 expressions. We shall �rst
onsider the basis elements of Aexp:The
ase n: From Table 1.1 we have A[[n℄℄s = N [[n℄℄ as well as A[[n℄℄s 0 = N [[n℄℄.So A[[n℄℄s = A[[n℄℄s 0 and
learly the lemma holds in this
ase.The
ase x : From Table 1.1 we have A[[x ℄℄s = s x as well as A[[x ℄℄s 0 = s 0 x . Fromthe assumptions of the lemma we get s x = s 0 x be
ause x 2 FV(x) so
learly thelemma holds in this
ase.Next we turn to the
omposite elements of Aexp:The
ase a1 + a2: From Table 1.1 we have A[[a1 + a2℄℄s = A[[a1℄℄s + A[[s2℄℄s andsimilarly A[[a1 + a2℄℄s 0 = A[[a1℄℄s 0 + A[[s2℄℄s 0. Sin
e a i (for i = 1,2) is an immediatesubexpression of a1 + a2 and FV(a i) � FV(a1 + a2) we
an apply the indu
tionhypothesis (that is the lemma) to a i and get A[[a i℄℄s = A[[a i℄℄s 0. It is now easy to

16 1 Introdu
tionsee that the lemma holds for a1 + a2 as well.The
ases a1 � a2 and a1 ? a2 follow the same pattern and are omitted. This
ompletes the proof. 2In a similar way we may de�ne the set FV(b) of free variables in a booleanexpression b byFV(true) = ;FV(false) = ;FV(a1 = a2) = FV(a1) [FV(a2)FV(a1 � a2) = FV(a1) [FV(a2)FV(:b) = FV(b)FV(b1 ^ b2) = FV(b1) [FV(b2)Exer
ise 1.12 (Essential) Let s and s 0 be two states satisfying that s x = s 0 xfor all x in FV(b). Prove that B[[b℄℄s = B[[b℄℄s 0. 2SubstitutionsWe shall later be interested in repla
ing ea
h o

urren
e of a variable y in anarithmeti
 expression a with another arithmeti
 expression a0. This is
alledsubstitution and we write a[y 7!a0℄ for the arithmeti
 expression so obtained. Theformal de�nition is as follows:n[y 7!a0℄ = nx [y 7!a0℄ = 8<: a0 if x = yx if x 6= y(a1 + a2)[y 7!a0℄ = (a1[y 7!a0℄) + (a2[y 7!a0℄)(a1 ? a2)[y 7!a0℄ = (a1[y 7!a0℄) ? (a2[y 7!a0℄)(a1 � a2)[y 7!a0℄ = (a1[y 7!a0℄) � (a2[y 7!a0℄)As an example (x+1)[x7!3℄ = 3+1 and (x+y?x)[x7!y�5℄ = (y�5)+y?(y�5).We also have a notion of substitution (or updating) for states. We de�nes[y 7!v ℄ to be the state that is as s ex
ept that the value bound to y is v , that is(s[y 7!v ℄) x = 8<: v if x = ys x if x 6= yThe relationship between the two
on
epts is shown in the following exer
ise:

1.4 Properties of the semanti
s 17Exer
ise 1.13 (Essential) Prove that A[[a[y 7!a0℄℄℄s = A[[a℄℄(s[y 7!A[[a0℄℄s℄) forall states s. 2Exer
ise 1.14 (Essential) De�ne substitution for boolean expressions: b[y 7!a0℄is to be the boolean expression that is as b ex
ept that all o

urren
es of thevariable y are repla
ed by the arithmeti
 expression a0. Prove that your de�nitionsatis�esB[[b[y 7!a0℄℄℄s = B[[b℄℄(s[y 7!A[[a0℄℄s℄)for all states s. 2

18 1 Introdu
tion

Chapter 2Operational Semanti
sThe role of a statement inWhile is to
hange the state. For example, if x is boundto 3 in s and we exe
ute the statement x := x + 1 then we get a new state where xis bound to 4. So while the semanti
s of arithmeti
 and boolean expressions onlyinspe
t the state in order to determine the value of the expression, the semanti
sof statements will modify the state as well.In an operational semanti
s we are
on
erned with how to exe
ute programsand not merely what the results of exe
ution are. More pre
isely, we are interestedin how the states are modi�ed during the exe
ution of the statement. We shall
onsider two di�erent approa
hes to operational semanti
s:� Natural semanti
s: its purpose is to des
ribe how the overall results of exe-
utions are obtained.� Stru
tural operational semanti
s: its purpose is to des
ribe how the individualsteps of the
omputations take pla
e.We shall see that for the language While we
an easily spe
ify both kinds ofsemanti
s and that they will be \equivalent" in a sense to be made
lear later.However, we shall also give examples of programming
onstru
ts where one of theapproa
hes is superior to the other.For both kinds of operational semanti
s, the meaning of statements will bespe
i�ed by a transition system. It will have two types of
on�gurations:hS , si representing that the statement S is to be exe
uted fromthe state s, ands representing a terminal (that is �nal) state.The terminal
on�gurations will be those of the latter form. The transition relationwill then des
ribe how the exe
ution takes pla
e. The di�eren
e between the twoapproa
hes to operational semanti
s amounts to di�erent ways of spe
ifying thetransition relation. 19

20 2 Operational Semanti
s[assns℄ hx := a, si ! s[x 7!A[[a℄℄s℄[skipns℄ hskip, si ! s[
ompns℄ hS 1, si ! s 0, hS 2, s 0i ! s 00hS 1;S 2, si ! s 00[if ttns℄ hS 1, si ! s 0hif b then S 1 else S 2, si ! s 0 if B[[b℄℄s = tt[if�ns℄ hS 2, si ! s 0hif b then S 1 else S 2, si ! s 0 if B[[b℄℄s = �[while ttns℄ hS , si ! s 0, hwhile b do S , s 0i ! s 00hwhile b do S , si ! s 00 if B[[b℄℄s = tt[while�ns℄ hwhile b do S , si ! s if B[[b℄℄s = �Table 2.1: Natural semanti
s for While2.1 Natural semanti
sIn a natural semanti
s we are
on
erned with the relationship between the initialand the �nal state of an exe
ution. Therefore the transition relation will spe
ifythe relationship between the initial state and the �nal state for ea
h statement.We shall write a transition ashS , si ! s 0Intuitively this means that the exe
ution of S from s will terminate and the re-sulting state will be s 0.The de�nition of ! is given by the rules of Table 2.1. A rule has the generalform hS 1, s1i ! s 01, � � �, hS n, sni ! s 0nhS , si ! s 0 if � � �where S 1, � � �, S n are immediate
onstituents of S or are statements
onstru
tedfrom the immediate
onstituents of S . A rule has a number of premises (writtenabove the solid line) and one
on
lusion (written below the solid line). A rule mayalso have a number of
onditions (written to the right of the solid line) that haveto be ful�lled whenever the rule is applied. Rules with an empty set of premisesare
alled axioms and the solid line is then omitted.Intuitively, the axiom [assns℄ says that in a state s, x := a is exe
uted to yielda �nal state s[x 7!A[[a℄℄s℄ whi
h is as s ex
ept that x has the value A[[a℄℄s. This

2.1 Natural semanti
s 21is really an axiom s
hema be
ause x , a and s are meta-variables standing forarbitrary variables, arithmeti
 expressions and states but we shall simply use theterm axiom for this. We obtain an instan
e of the axiom by sele
ting parti
ularvariables, arithmeti
 expressions and states. As an example, if s0 is the state thatassigns the value 0 to all variables thenhx := x+1, s0i ! s0[x7!1℄is an instan
e of [assns℄ be
ause x is instantiated to x, a to x+1, s to s0, and thevalue A[[x+1℄℄s0 is determined to be 1.Similarly [skipns℄ is an axiom and, intuitively, it says that skip does not
hangethe state. Letting s0 be as above we obtainhskip, s0i ! s0as an instan
e of the axiom [skipns℄.Intuitively, the rule [
ompns℄ says that to exe
ute S 1;S 2 from state s we must�rst exe
ute S 1 from s. Assuming that this yields a �nal state s 0 we shall thenexe
ute S 2 from s 0. The premises of the rule are
on
erned with the two statementsS 1 and S 2 whereas the
on
lusion expresses a property of the
omposite statementitself. The following is an instan
e of the rule:hskip, s0i ! s0, hx := x+1, s0i ! s0[x7!1℄hskip; x := x+1, s0i ! s0[x7!1℄Here S 1 is instantiated to skip, S 2 to x := x + 1, s and s 0 are both instantiatedto s0 and s 00 is instantiated to s0[x7!1℄. Similarlyhskip, s0i ! s0[x7!5℄, hx := x+1, s0[x7!5℄i ! s0hskip; x := x+1, s0i ! s0is an instan
e of [
ompns℄ although it is less interesting be
ause its premises
annever be derived from the axioms and rules of Table 2.1.For the if-
onstru
t we have two rules. The �rst one, [if ttns℄, says that to exe
uteif b then S 1 else S 2 we simply exe
ute S 1 provided that b evaluates to tt inthe state. The other rule, [if�ns℄, says that if b evaluates to � then to exe
uteif b then S 1 else S 2 we just exe
ute S 2. Taking s0 x = 0 the following is aninstan
e of the rule [if ttns℄:hskip, s0i ! s0hif x = 0 then skip else x := x+1, s0i ! s0be
ause B[[x = 0℄℄s0 = tt. However, had it been the
ase that s0 x 6= 0 then itwould not be an instan
e of the rule [if ttns℄ be
ause then B[[x = 0℄℄s0 would amountto �. Furthermore it would not be an instan
e of the rule [if�ns℄ be
ause the premisehas the wrong form.

22 2 Operational Semanti
sFinally, we have one rule and one axiom expressing how to exe
ute the while-
onstru
t. Intuitively, the meaning of the
onstru
t while b do S in the state s
an be explained as follows:� If the test b evaluates to true in the state s then we �rst exe
ute the body ofthe loop and then
ontinue with the loop itself from the state so obtained.� If the test b evaluates to false in the state s then the exe
ution of the loopterminates.The rule [while ttns℄ formalizes the �rst
ase where b evaluates to tt and it saysthat then we have to exe
ute S followed by while b do S again. The axiom[while�ns℄ formalizes the se
ond possibility and states that if b evaluates to � thenwe terminate the exe
ution of the while-
onstru
t leaving the state un
hanged.Note that the rule [while ttns℄ spe
i�es the meaning of the while-
onstru
t in termsof the meaning of the very same
onstru
t so that we do not have a
ompositionalde�nition of the semanti
s of statements.When we use the axioms and rules to derive a transition hS , si ! s 0 we obtaina derivation tree. The root of the derivation tree is hS , si ! s 0 and the leavesare instan
es of axioms. The internal nodes are
on
lusions of instantiated rulesand they have the
orresponding premises as their immediate sons. We requestthat all the instantiated
onditions of axioms and rules must be satis�ed. Whendisplaying a derivation tree it is
ommon to have the root at the bottom ratherthan at the top; hen
e the son is above its father. A derivation tree is
alled simpleif it is an instan
e of an axiom, otherwise it is
alled
omposite.Example 2.1 Let us �rst
onsider the statement of Chapter 1:(z:=x; x:=y); y:=zLet s0 be the state that maps all variables ex
ept x and y to 0 and has s0 x = 5and s0 y = 7. Then the following is an example of a derivation tree:hz:=x, s0i ! s1 hx:=y, s1i ! s2hz:=x; x:=y, s0i ! s2 hy:=z, s2i ! s3h(z:=x; x:=y); y:=z, s0i ! s3where we have used the abbreviations:s1 = s0[z7!5℄s2 = s1[x7!7℄s3 = s2[y7!5℄

2.1 Natural semanti
s 23The derivation tree has three leaves denoted hz:=x, s0i ! s1, hx:=y, s1i ! s2,and hy:=z, s2i ! s3,
orresponding to three appli
ations of the axiom [assns℄. Therule [
ompns℄ has been applied twi
e. One instan
e ishz:=x, s0i ! s1, hx:=y, s1i ! s2hz:=x; x:=y, s0i ! s2whi
h has been used to
ombine the leaves hz:=x, s0i ! s1 and hx:=y, s1i ! s2with the internal node labelled hz:=x; x:=y, s0i ! s2. The other instan
e ishz:=x; x:=y, s0i ! s2, hy:=z, s2i ! s3h(z:=x; x:=y); y:=z, s0i ! s3whi
h has been used to
ombine the internal node hz:=x; x:=y, s0i ! s2 and theleaf hy:=z, s2i ! s3 with the root h(z:=x; x:=y); y:=z, s0i ! s3. 2Consider now the problem of
onstru
ting a derivation tree for a given state-ment S and state s. The best way to approa
h this is to try to
onstru
t thetree from the root upwards. So we will start by �nding an axiom or rule with a
on
lusion where the left-hand side mat
hes the
on�guration hS , si. There aretwo
ases:� If it is an axiom and if the
onditions of the axiom are satis�ed then we
an determine the �nal state and the
onstru
tion of the derivation tree is
ompleted.� If it is a rule then the next step is to try to
onstru
t derivation trees for thepremises of the rule. When this has been done, it must be
he
ked that the
onditions of the rule are ful�lled, and only then
an we determine the �nalstate
orresponding to hS , si.Often there will be more than one axiom or rule that mat
hes a given
on�gurationand then the various possibilities have to be inspe
ted in order to �nd a derivationtree. We shall see later that for While there will be at most one derivation treefor ea
h transition hS , si ! s 0 but that this need not hold in extensions ofWhile.Example 2.2 Consider the fa
torial statement:y:=1; while :(x=1) do (y:=y ? x; x:=x�1)and let s be a state with s x = 3. In this example we shall show thathy:=1; while :(x=1) do (y:=y ? x; x:=x�1), si ! s[y7!6℄[x7!1℄ (*)To do so we shall show that (*)
an be obtained from the transition system ofTable 2.1. This is done by
onstru
ting a derivation tree with the transition (*)as its root.Rather than presenting the
omplete derivation tree T in one go, we shall buildit in an upwards manner. Initially, we only know that the root of T is of the form:

24 2 Operational Semanti
shy:=1; while :(x=1) do (y:=y ? x; x:=x�1), si ! s61However, the statementy:=1; while :(x=1) do (y:=y ? x; x:=x�1)is of the form S 1; S 2 so the only rule that
ould have been used to produ
e theroot of T is [
ompns℄. Therefore T must have the form:hy:=1, si!s13 T 1hy:=1; while :(x=1) do (y:=y?x; x:=x�1), si!s61for some state s13 and some derivation tree T 1 whi
h has roothwhile :(x=1) do (y:=y?x; x:=x�1), s13i!s61 (**)Sin
e hy:=1, si ! s13 has to be an instan
e of the axiom [assns℄ we get that s13 =s[y7!1℄.The missing part T 1 of T is a derivation tree with root (**). Sin
e the state-ment of (**) has the form while b do S the derivation tree T 1 must have been
onstru
ted by applying either the rule [while ttns℄ or the axiom [while�ns℄. Sin
eB[[:(x=1)℄℄s13 = tt we see that only the rule [while ttns℄
ould have been applied soT 1 will have the form:T 2 T 3hwhile :(x=1) do (y:=y?x; x:=x�1), s13i!s61where T 2 is a derivation tree with roothy:=y?x; x:=x�1, s13i!s32and T 3 is a derivation tree with roothwhile :(x=1) do (y:=y?x; x:=x�1), s32i!s61 (***)for some state s32.Using that the form of the statement y:=y?x; x:=x�1 is S 1;S 2 it is now easyto see that the derivation tree T 2 ishy:=y?x, s13i!s33 hx:=x�1, s33i!s32hy:=y?x; x:=x�1, s13i!s32where s33 = s[y7!3℄ and s32 = s[y7!3℄[x7!2℄. The leaves of T 2 are instan
es of[assns℄ and they are
ombined using [
ompns℄. So now T 2 is fully
onstru
ted.In a similar way we
an
onstru
t the derivation tree T 3 with root (***) andwe get:

2.1 Natural semanti
s 25hy:=y?x, s32i!s62 hx:=x�1, s62i!s61hy:=y?x; x:=x�1, s32i!s61 T 4hwhile :(x=1) do (y:=y?x; x:=x�1), s32i!s61where s62 = s[y7!6℄[x7!2℄, s61 = s[y7!6℄[x7!1℄ and T 4 is a derivation tree withroot hwhile :(x=1) do (y:=y?x; x:=x�1), s61i!s61Finally, we see that the derivation tree T 4 is an instan
e of the axiom [while�ns℄be
ause B[[:(x=1)℄℄s61 = �. This
ompletes the
onstru
tion of the derivation treeT for (*). 2Exer
ise 2.3 Consider the statementz:=0; while y�x do (z:=z+1; x:=x�y)Constru
t a derivation tree for this statement when exe
uted in a state where xhas the value 17 and y has the value 5. 2We shall introdu
e the following terminology: The exe
ution of a statement Son a state s� terminates if and only if there is a state s 0 su
h that hS , si ! s 0, and� loops if and only if there is no state s 0 su
h that hS , si ! s 0.We shall say that a statement S always terminates if its exe
ution on a state sterminates for all
hoi
es of s, and always loops if its exe
ution on a state s loopsfor all
hoi
es of s.Exer
ise 2.4 Consider the following statements� while :(x=1) do (y:=y?x; x:=x�1)� while 1�x do (y:=y?x; x:=x�1)� while true do skipFor ea
h statement determine whether or not it always terminates and whether ornot it always loops. Try to argue for your answers using the axioms and rules ofTable 2.1. 2

26 2 Operational Semanti
sProperties of the semanti
sThe transition system gives us a way of arguing about statements and their prop-erties. As an example we may be interested in whether two statements S 1 and S 2are semanti
ally equivalent; by this we mean that for all states s and s 0hS 1, si ! s 0 if and only if hS 2, si ! s 0Lemma 2.5 The statementwhile b do Sis semanti
ally equivalent toif b then (S ; while b do S) else skip.Proof: The proof is in two stages. We shall �rst prove that ifhwhile b do S , si ! s 00 (*)then hif b then (S ; while b do S) else skip, si ! s 00 (**)Thus, if the exe
ution of the loop terminates then so does its one-level unfolding.Later we shall show that if the unfolded loop terminates then so will the loop itself;the
onjun
tion of these results then prove the lemma.Be
ause (*) holds we know that we have a derivation tree T for it. It
anhave one of two forms depending on whether it has been
onstru
ted using therule [while ttns℄ or the axiom [while�ns℄. In the �rst
ase the derivation tree T has theform: T 1 T 2hwhile b do S , si ! s 00where T 1 is a derivation tree with root hS , si!s 0 and T 2 is a derivation tree withroot hwhile b do S , s 0i!s 00. Furthermore, B[[b℄℄s = tt. Using the derivation treesT 1 and T 2 as the premises for the rules [
ompns℄ we
an
onstru
t the derivationtree: T 1 T 2hS ; while b do S , si ! s 00Using that B[[b℄℄s = tt we
an use the rule [if ttns℄ to
onstru
t the derivation tree

2.1 Natural semanti
s 27T 1 T 2hS ; while b do S , si ! s 00hif b then (S ; while b do S) else skip, si ! s 00thereby showing that (**) holds.Alternatively, the derivation tree T is an instan
e of [while�ns℄. Then B[[b℄℄s = �and we must have that s 00=s. So T simply ishwhile b do S , si ! sUsing the axiom [skipns℄ we get a derivation treehskip, si!s 00and we
an now apply the rule [if�ns℄ to
onstru
t a derivation tree for (**):hskip, si ! s 00hif b then (S ; while b do S) else skip, si ! s 00This
ompletes the �rst part of the proof.For the se
ond stage of the proof we assume that (**) holds and shall provethat (*) holds. So we have a derivation tree T for (**) and must
onstru
t one for(*). Only two rules
ould give rise to the derivation tree T for (**), namely [if ttns℄or [if�ns℄. In the �rst
ase, B[[b℄℄s = tt and we have a derivation tree T 1 with roothS ; while b do S , si!s 00The statement has the general form S 1; S 2 and the only rule that
ould give thisis [
ompns℄. Therefore there are derivation trees T 2 and T 3 forhS , si!s 0, andhwhile b do S , s 0i!s 00for some state s 0. It is now straightforward to use the rule [while ttns℄ to
ombine T 2and T 3 to a derivation tree for (*).In the se
ond
ase, B[[b℄℄s = � and T is
onstru
ted using the rule [if�ns℄. Thismeans that we have a derivation tree forhskip, si!s 00and a

ording to axiom [skipns℄ it must be the
ase that s=s 00. But then we
anuse the axiom [while�ns℄ to
onstru
t a derivation tree for (*). This
ompletes theproof. 2

28 2 Operational Semanti
sExer
ise 2.6 Prove that the two statements S 1;(S 2;S 3) and (S 1;S 2);S 3 are se-manti
ally equivalent. Constru
t a statement showing that S 1;S 2 is not, in general,semanti
ally equivalent to S 2;S 1. 2Exer
ise 2.7 Extend the language While with the statementrepeat S until band de�ne the relation ! for it. (The semanti
s of the repeat-
onstru
t is notallowed to rely on the existen
e of a while-
onstru
t in the language.) Provethat repeat S until b and S ; if b then skip else (repeat S until b) aresemanti
ally equivalent. 2Exer
ise 2.8 Another iterative
onstru
t isfor x := a1 to a2 do SExtend the language While with this statement and de�ne the relation ! for it.Evaluate the statementy:=1; for z:=1 to x do (y:=y ? x; x:=x�1)from a state where x has the value 5. Hint: You may need to assume that youhave an \inverse" to N , so that there is a numeral for ea
h number that may ariseduring the
omputation. (The semanti
s of the for-
onstru
t is not allowed torely on the existen
e of a while-
onstru
t in the language.) 2In the above proof we used Table 2.1 to inspe
t the stru
ture of the derivationtree for a
ertain transition known to hold. In the proof of the next result we shall
ombine this with an indu
tion on the shape of the derivation tree. The idea
anbe summarized as follows:Indu
tion on the Shape of Derivation Trees1: Prove that the property holds for all the simple derivation trees by showingthat it holds for the axioms of the transition system.2: Prove that the property holds for all
omposite derivation trees: For ea
hrule assume that the property holds for its premises (this is
alled theindu
tion hypothesis) and prove that it also holds for the
on
lusion of therule provided that the
onditions of the rule are satis�ed.To formulate the theorem we shall say that the semanti
s of Table 2.1 is determin-isti
 if for all
hoi
es of S , s, s 0 and s 00 we have thathS , si ! s 0 and hS , si ! s 00 imply s 0 = s 00

2.1 Natural semanti
s 29This means that for every statement S and initial state s we
an uniquely determinea �nal state s 0 if (and only if) the exe
ution of S terminates.Theorem 2.9 The natural semanti
s of Table 2.1 is deterministi
.Proof: We assume that hS , si!s 0 and shall prove thatif hS , si!s 00 then s 0 = s 00.We shall pro
eed by indu
tion on the shape of the derivation tree for hS , si!s 0.The
ase [assns℄: Then S is x :=a and s 0 is s[x 7!A[[a℄℄s℄. The only axiom or rulethat
ould be used to give hx :=a, si!s 00 is [assns℄ so it follows that s 00 must bes[x 7!A[[a℄℄s℄ and thereby s 0 = s 00.The
ase [skipns℄: Analogous.The
ase [
ompns℄: Assume thathS 1;S 2, si!s 0holds be
ausehS 1, si!s0 and hS 2, s0i!s 0for some s0. The only rule that
ould be applied to give hS 1;S 2, si!s 00 is [
ompns℄so there is a state s1 su
h thathS 1, si!s1 and hS 2, s1i!s 00The indu
tion hypothesis
an be applied to the premise hS 1, si!s0 and fromhS 1, si!s1 we get s0 = s1. Similarly, the indu
tion hypothesis
an be applied tothe premise hS 2, s0i!s 0 and from hS 2, s0i!s 00 we get s 0 = s 00 as required.The
ase [if ttns℄: Assume thathif b then S 1 else S 2, si ! s 0holds be
auseB[[b℄℄s = tt and hS 1, si!s 0From B[[b℄℄s = tt we get that the only rule that
ould be applied to give thealternative hif b then S 1 else S 2, si ! s 00 is [if ttns℄. So it must be the
ase thathS 1, si ! s 00

30 2 Operational Semanti
sBut then the indu
tion hypothesis
an be applied to the premise hS 1, si ! s 0 andfrom hS 1, si ! s 00 we get s 0 = s 00.The
ase [if�ns℄: Analogous.The
ase [while ttns℄: Assume thathwhile b do S , si ! s 0be
auseB[[b℄℄s = tt, hS , si!s0 and hwhile b do S , s0i!s 0The only rule that
ould be applied to give hwhile b do S , si ! s 00 is [while ttns℄be
ause B[[b℄℄s = tt and this means thathS , si!s1 and hwhile b do S , s1i ! s 00must hold for some s1. Again the indu
tion hypothesis
an be applied to thepremise hS , si!s0 and from hS , si!s1 we get s0 = s1. Thus we havehwhile b do S , s0i!s 0 and hwhile b do S , s0i!s 00Sin
e hwhile b do S , s0i!s 0 is a premise of (the instan
e of) [while ttns℄ we
anapply the indu
tion hypothesis to it. From hwhile b do S , s0i!s 00 we thereforeget s 0 = s 00 as required.The
ase [while�ns℄: Straightforward. 2Exer
ise 2.10 * Prove that repeat S until b (as de�ned in Exer
ise 2.7) issemanti
ally equivalent to S ; while :b do S . Argue that this means that theextended semanti
s is deterministi
. 2It is worth observing that we
ould not prove Theorem 2.9 using stru
turalindu
tion on the statement S . The reason is that the rule [while ttns℄ de�nes thesemanti
s of while b do S in terms of itself. Stru
tural indu
tion works �ne whenthe semanti
s is de�ned
ompositionally (as e.g. A and B in Chapter 1). But thenatural semanti
s of Table 2.1 is not de�ned
ompositionally be
ause of the rule[while ttns℄.Basi
ally, indu
tion on the shape of derivation trees is a kind of stru
turalindu
tion on the derivation trees: In the base
ase we show that the propertyholds for the simple derivation trees. In the indu
tion step we assume that theproperty holds for the immediate
onstituents of a derivation tree and show thatit also holds for the
omposite derivation tree.

2.1 Natural semanti
s 31The semanti
 fun
tion SnsThe meaning of statements
an now be summarized as a (partial) fun
tion fromState to State. We de�neSns: Stm ! (State ,! State)and this means that for every statement S we have a partial fun
tionSns[[S ℄℄ 2 State ,! State.It is given bySns[[S ℄℄s = (s 0 if hS , si ! s 0undef otherwiseNote that Sns is a well-de�ned partial fun
tion be
ause of Theorem 2.9. The needfor partiality is demonstrated by the statement while true do skip that alwaysloops (see Exer
ise 2.4); we then haveSns[[while true do skip℄℄ s = undeffor all states s.Exer
ise 2.11 The semanti
s of arithmeti
 expressions is given by the fun
tionA. We
an also use an operational approa
h and de�ne a natural semanti
s forthe arithmeti
 expressions. It will have two kinds of
on�gurations:ha, si denoting that a has to be evaluated in state s, andz denoting the �nal value (an element of Z).The transition relation !Aexp has the formha, si !Aexp zwhere the idea is that a evaluates to z in state s. Some example axioms and rulesare hn, si !Aexp N [[n℄℄hx , si !Aexp s xha1, si !Aexp z 1, ha2, si !Aexp z 2ha1 + a2, si !Aexp z where z = z 1 + z 2Complete the spe
i�
ation of the transition system. Use stru
tural indu
tion onAexp to prove that the meaning of a de�ned by this relation is the same as thatde�ned by A. 2

32 2 Operational Semanti
sExer
ise 2.12 In a similar way we
an spe
ify a natural semanti
s for the booleanexpressions. The transitions will have the formhb, si !Bexp twhere t 2 T. Spe
ify the transition system and prove that the meaning of b de�nedin this way is the same as that de�ned by B. 2Exer
ise 2.13 Determine whether or not semanti
 equivalen
e of S 1 and S 2amounts to Sns[[S 1℄℄ = Sns[[S 2℄℄. 22.2 Stru
tural operational semanti
sIn stru
tural operational semanti
s the emphasis is on the individual steps of theexe
ution, that is the exe
ution of assignments and tests. The transition relationhas the formhS , si)
where
 either is of the form hS 0, s 0i or of the form s 0. The transition expressesthe �rst step of the exe
ution of S from state s. There are two possible out
omes:� If
 is of the form hS 0, s 0i then the exe
ution of S from s is not
ompleted andthe remaining
omputation is expressed by the intermediate
on�gurationhS 0, s 0i.� If
 is of the form s 0 then the exe
ution of S from s has terminated and the�nal state is s 0.We shall say that hS , si is stu
k if there is no
 su
h that hS , si)
.The de�nition of) is given by the axioms and rules of Table 2.2 and thegeneral form of these are as in the previous se
tion. Axioms [asssos℄ and [skipsos℄have not
hanged at all be
ause the assignment and skip statements are fullyexe
uted in one step.The rules [
omp 1sos℄ and [
omp 2sos℄ express that to exe
ute S 1;S 2 in state s we�rst exe
ute S 1 one step from s. Then there are two possible out
omes:� If the exe
ution of S 1 has not been
ompleted we have to
omplete it beforeembarking on the exe
ution of S 2.� If the exe
ution of S 1 has been
ompleted we
an start on the exe
ution ofS 2.

2.2 Stru
tural operational semanti
s 33[asssos℄ hx := a, si) s[x 7!A[[a℄℄s℄[skipsos℄ hskip, si) s[
omp 1sos℄ hS 1, si) hS 01, s 0ihS 1;S 2, si) hS 01;S 2, s 0i[
omp 2sos℄ hS 1, si) s 0hS 1;S 2, si) hS 2, s 0i[if ttsos℄ hif b then S 1 else S 2, si) hS 1, si if B[[b℄℄s = tt[if�sos℄ hif b then S 1 else S 2, si) hS 2, si if B[[b℄℄s = �[whilesos℄ hwhile b do S , si)hif b then (S ; while b do S) else skip, siTable 2.2: Stru
tural operational semanti
s for WhileThe �rst
ase is
aptured by the rule [
omp 1sos℄: If the result of exe
uting the �rststep of hS , si is an intermediate
on�guration hS 01, s 0i then the next
on�gurationis hS 01;S 2, s 0i showing that we have to
omplete the exe
ution of S 1 before we
anstart on S 2. The se
ond
ase above is
aptured by the rule [
omp 2sos℄: If the resultof exe
uting S 1 from s is a �nal state s 0 then the next
on�guration is hS 2, s 0i, sothat we
an now start on S 2.From the axioms [if ttsos℄ and [if�sos℄ we see that the �rst step in exe
uting a
onditional is to perform the test and to sele
t the appropriate bran
h. Finally, theaxiom [whilesos℄ shows that the �rst step in the exe
ution of the while-
onstru
t isto unfold it one level, that is to rewrite it as a
onditional. The test will thereforebe performed in the se
ond step of the exe
ution (where one of the axioms for theif-
onstru
t is applied). We shall see an example of this shortly.A derivation sequen
e of a statement S starting in state s is either� a �nite sequen
e
0,
1,
2, � � �,
kof
on�gurations satisfying
0 = hS , si,
i)
i+1 for 0�i<k, k�0, and where
k is either a terminal
on�guration or a stu
k
on�guration, or it is� an in�nite sequen
e
0,
1,
2, � � �

34 2 Operational Semanti
sof
on�gurations satisfying
0 = hS , si and
i)
i+1 for 0�iWe shall write
0)i
i to indi
ate that there are i steps in the exe
ution from
0 to
i and we write
0)�
i to indi
ate that there is a �nite number of steps.Note that
0)i
i and
0)�
i need not be derivation sequen
es: they will beso if and only if
i is either a terminal
on�guration or a stu
k
on�guration.Example 2.14 Consider the statement(z := x; x := y); y := zof Chapter 1 and let s0 be the state that maps all variables ex
ept x and y to 0and that has s0 x = 5 and s0 y = 7. We then have the derivation sequen
e:h(z := x; x := y); y := z, s0i) hx := y; y := z, s0[z7!5℄i) hy := z, (s0[z7!5℄)[x7!7℄i) ((s0[z7!5℄)[x7!7℄)[y7!5℄Corresponding to ea
h of these steps we have derivation trees explaining why theytake pla
e. For the �rst steph(z := x; x := y); y := z, s0i) hx := y; y := z, s0[z7!5℄ithe derivation tree is hz := x, s0i) s0[z7!5℄hz := x; x := y, s0i) hx := y, s0[z7!5℄ih(z := x; x := y); y := z, s0i) hx := y; y := z, s0[z7!5℄iand it has been
onstru
ted from the axiom [asssos℄ and the rules [
omp 1sos℄ and[
omp 2sos℄. The derivation tree for the se
ond step is
onstru
ted in a similar wayusing only [asssos℄ and [
omp 2sos℄ and for the third step it simply is an instan
e of[asssos℄. 2Example 2.15 Assume that s x = 3. The �rst step of exe
ution from the
on-�gurationhy:=1; while :(x=1) do (y:=y ? x; x:=x�1), siwill give the
on�gurationhwhile :(x=1) do (y:=y ? x; x:=x�1), s[y7!1℄i

2.2 Stru
tural operational semanti
s 35This is a
hieved using the axiom [asssos℄ and the rule [
omp 2sos℄ as shown by thederivation tree: hy:=1, si) s[y7!1℄hy:=1; while :(x=1) do (y:=y?x; x:=x�1), si)hwhile :(x=1) do (y:=y?x; x:=x�1), s[y7!1℄iThe next step of the exe
ution will rewrite the loop as a
onditional using theaxiom [whilesos℄ so we get the
on�gurationhif :(x=1) then ((y:=y?x; x:=x�1);while :(x=1) do (y:=y?x; x:=x�1))else skip, s[y7!1℄iThe following step will perform the test and yields (a

ording to [if ttsos℄) the
on-�gurationh(y:=y?x; x:=x�1); while :(x=1) do (y:=y ? x; x:=x�1), s[y7!1℄iWe
an then use [asssos℄, [
omp 2sos℄ and [
omp 1sos℄ to obtain the
on�gurationhx:=x�1; while :(x=1) do (y:=y ? x; x:=x�1), s[y7!3℄ias is veri�ed by the derivation tree:hy:=y?x, s[y7!1℄i)s[y7!3℄hy:=y?x; x:=x�1, s[y7!1℄i)hx:=x�1, s[y7!3℄ih(y:=y?x; x:=x�1); while :(x=1) do (y:=y?x; x:=x�1), s[y7!1℄i)hx:=x�1; while :(x=1) do (y:=y ? x; x:=x�1), s[y7!3℄iUsing [asssos℄ and [
omp 2sos℄ the next
on�guration will then behwhile :(x=1) do (y:=y ? x; x:=x�1), s[y7!3℄[x7!2℄iContinuing in this way we eventually rea
h the �nal state s[y7!6℄[x7!1℄. 2Exer
ise 2.16 Constru
t a derivation sequen
e for the statementz:=0; while y�x do (z:=z+1; x:=x�y)when exe
uted in a state where x has the value 17 and y has the value 5. Determinea state s su
h that the derivation sequen
e obtained for the above statement ands is in�nite. 2

36 2 Operational Semanti
sGiven a statement S in the language While and a state s it is always possibleto �nd at least one derivation sequen
e that starts in the
on�guration hS , si:simply apply axioms and rules forever or until a terminal or stu
k
on�guration isrea
hed. Inspe
tion of Table 2.2 shows that there are no stu
k
on�gurations inWhile and Exer
ise 2.22 below will show that there is in fa
t only one derivationsequen
e that starts with hS , si. However, some of the
onstru
ts
onsidered inSe
tion 2.4 that extend While will have
on�gurations that are stu
k or morethan one derivation sequen
e that starts in a given
on�guration.In analogy with the terminology of the previous se
tion we shall say that theexe
ution of a statement S on a state s� terminates if and only if there is a �nite derivation sequen
e starting withhS , si, and� loops if and only if there is an in�nite derivation sequen
e starting withhS , si.We shall say that the exe
ution of S on s terminates su

essfully if hS , si)� s 0for some state s 0; in While an exe
ution terminates su

essfully if and only if itterminates be
ause there are no stu
k
on�gurations. Finally, we shall say that astatement S always terminates if it terminates on all states, and always loops if itloops on all states.Exer
ise 2.17 Extend While with the
onstru
t repeat S until b and spe
-ify the stru
tural operational semanti
s for it. (The semanti
s for the repeat-
onstru
t is not allowed to rely on the existen
e of a while-
onstru
t.) 2Exer
ise 2.18 Extend While with the
onstru
t for x := a1 to a2 do S andspe
ify the stru
tural operational semanti
s for it. Hint: You may need to assumethat you have an \inverse" to N , so that there is a numeral for ea
h number thatmay arise during the
omputation. (The semanti
s for the for-
onstru
t is notallowed to rely on the existen
e of a while-
onstru
t.) 2Properties of the semanti
sFor stru
tural operational semanti
s it is often useful to
ondu
t proofs by in-du
tion on the length of the derivation sequen
es. The proof te
hnique may besummarized as follows:

2.2 Stru
tural operational semanti
s 37Indu
tion on the Length of Derivation Sequen
es1: Prove that the property holds for all derivation sequen
es of length 0.2: Prove that the property holds for all other derivation sequen
es: Assumethat the property holds for all derivation sequen
es of length at most k(this is
alled the indu
tion hypothesis) and show that it holds for deriva-tion sequen
es of length k+1.The indu
tion step of a proof following this prin
iple will often be done by inspe
t-ing either� the stru
ture of the synta
ti
 element, or� the derivation tree validating the �rst transition of the derivation sequen
e.Note that the proof te
hnique is a simple appli
ation of mathemati
al indu
tion.To illustrate the use of the proof te
hnique we shall prove the following lemma(to be used in the next se
tion). Intuitively, the lemma expresses that the exe
utionof a
omposite
onstru
t S 1;S 2
an be split into two parts, one
orresponding toS 1 and the other
orresponding to S 2.Lemma 2.19 If hS 1;S 2, si)k s 00 then there exists a state s 0 and natural numbersk1 and k2 su
h that hS 1, si)k1 s 0 and hS 2, s 0i)k2 s 00 where k = k1+k2.Proof: The proof is by indu
tion on the number k, that is by indu
tion on thelength of the derivation sequen
e hS 1;S 2, si)k s 00.If k = 0 then the result holds va
uously.For the indu
tion step we assume that the lemma holds for k � k0 and we shallprove it for k0+1. So assume thathS 1;S 2, si)k0+1 s 00This means that the derivation sequen
e
an be written ashS 1;S 2, si)
)k0 s 00for some
on�guration
. Now one of two
ases applies depending on whi
h of thetwo rules [
omp 1sos℄ and [
omp 2sos℄ was used to obtain hS 1;S 2, si)
.In the �rst
ase where [
omp 1sos℄ is used we havehS 1;S 2, si) hS 01;S 2, s 0ibe
ause

38 2 Operational Semanti
shS 1, si) hS 01, s 0iWe therefore havehS 01;S 2, s 0i)k0 s 00and the indu
tion hypothesis
an be applied to this derivation sequen
e be
auseit is shorter than the one we started with. This means that there is a state s0 andnatural numbers k1 and k2 su
h thathS 01, s 0i)k1 s0 and hS 2, s0i)k2 s 00where k1+k2=k0. Using that hS 1, si) hS 01, s 0i and hS 01, s 0i)k1 s0 we gethS 1, si)k1+1 s0We have already seen that hS 2, s0i)k2 s 00 and sin
e (k1+1)+k2 = k0+1 we haveproved the required result.The se
ond possibility is that [
omp 2sos℄ has been used to obtain the derivationhS 1;S 2, si)
. Then we havehS 1, si) s 0and
 is hS 2, s 0i so thathS 2, s 0i)k0 s 00The result now follows by
hoosing k1=1 and k2=k0. 2Exer
ise 2.20 Suppose that hS 1;S 2, si)�hS 2, s 0i. Show that it is not ne
essarilythe
ase that hS 1, si)�s 0. 2Exer
ise 2.21 (Essential) Prove thatif hS 1, si)k s 0 then hS 1;S 2, si)k hS 2, s 0ithat is the exe
ution of S 1 is not in
uen
ed by the statement following it. 2In the previous se
tion we de�ned a notion of determinism based on the naturalsemanti
s. For the stru
tural operational semanti
s we de�ne the similar notionas follows. The semanti
s of Table 2.2 is deterministi
 if for all
hoi
es of S , s,
and
0 we have thathS , si)
 and hS , si)
0 imply
 =
0

2.2 Stru
tural operational semanti
s 39Exer
ise 2.22 (Essential) Show that the stru
tural operational semanti
s ofTable 2.2 is deterministi
. Dedu
e that there is exa
tly one derivation sequen
estarting in a
on�guration hS , si. Argue that a statement S ofWhile
annot bothterminate and loop on a state s and hen
e it
annot both be always terminatingand always looping. 2In the previous se
tion we de�ned a notion of two statements S 1 and S 2 beingsemanti
ally equivalent. The similar notion
an be de�ned based on the stru
turaloperational semanti
s: S 1 and S 2 are semanti
ally equivalent if for all states s� hS 1, si)�
 if and only if hS 2, si)�
, whenever
 is a
on�guration thatis either stu
k or terminal, and� there is an in�nite derivation sequen
e starting in hS 1, si if and only if thereis one starting in hS 2, si.Note that in the �rst
ase the length of the two derivation sequen
es may bedi�erent.Exer
ise 2.23 Show that the following statements of While are semanti
allyequivalent in the above sense:� S ;skip and S� while b do S and if b then (S ; while b do S) else skip� S 1;(S 2;S 3) and (S 1;S 2);S 3You may use the result of Exer
ise 2.22. Dis
uss to what extent the notion ofsemanti
 equivalen
e introdu
ed above is the same as that de�ned from the naturalsemanti
s. 2Exer
ise 2.24 Prove that repeat S until b (as de�ned in Exer
ise 2.17) is se-manti
ally equivalent to S ; while : b do S . 2The semanti
 fun
tion S sosAs in the previous se
tion the meaning of statements
an be summarized by a(partial) fun
tion from State to State:Ssos: Stm ! (State ,! State)It is given bySsos[[S ℄℄s = 8<: s 0 if hS , si)� s 0undef otherwiseThe well-de�nedness of the de�nition follows from Exer
ise 2.22.Exer
ise 2.25 Determine whether or not semanti
 equivalen
e of S 1 and S 2amounts to Ssos[[S 1℄℄ = Ssos[[S 2℄℄. 2

40 2 Operational Semanti
s2.3 An equivalen
e resultWe have given two de�nitions of the semanti
s ofWhile and we shall now addressthe question of their equivalen
e.Theorem 2.26 For every statement S of While we have Sns[[S ℄℄ = Ssos[[S ℄℄.This result expresses two properties:� If the exe
ution of S from some state terminates in one of the semanti
s thenit also terminates in the other and the resulting states will be equal.� If the exe
ution of S from some state loops in one of the semanti
s then itwill also loop in the other.It should be fairly obvious that the �rst property follows from the theorem be
ausethere are no stu
k
on�gurations in the stru
tural operational semanti
s ofWhile.For the other property suppose that the exe
ution of S on state s loops in oneof the semanti
s. If it terminates in the other semanti
s we have a
ontradi
tionwith the �rst property be
ause both semanti
s are deterministi
 (Theorem 2.9 andExer
ise 2.22). Hen
e S will have to loop on state s also in the other semanti
s.The theorem is proved in two stages as expressed by Lemma 2.27 and Lemma2.28 below. We shall �rst prove:Lemma 2.27 For every statement S of While and states s and s 0 we havehS , si ! s 0 implies hS , si)� s 0.So if the exe
ution of S from s terminates in the natural semanti
s then it willterminate in the same state in the stru
tural operational semanti
s.Proof: The proof pro
eeds by indu
tion on the shape of the derivation tree forhS , si ! s 0.The
ase [assns℄: We assume thathx := a, si ! s[x 7!A[[a℄℄s℄From [asssos℄ we get the requiredhx := a, si) s[x 7!A[[a℄℄s℄The
ase [skipns℄: Analogous.The
ase [
ompns℄: Assume that

2.3 An equivalen
e result 41hS 1;S 2, si ! s 00be
ausehS 1, si ! s 0 and hS 2, s 0i ! s 00The indu
tion hypothesis
an be applied to both of the premises hS 1, si ! s 0 andhS 2, s 0i ! s 00 and giveshS 1, si)� s 0 and hS 2, s 0i)� s 00From Exer
ise 2.21 we gethS 1;S 2, si)� hS 2, s 0iand thereby hS 1;S 2, si)� s 00.The
ase [if ttns℄: Assume thathif b then S 1 else S 2, si ! s 0be
auseB[[b℄℄s = tt and hS 1, si ! s 0Sin
e B[[b℄℄s = tt we gethif b then S 1 else S 2, si) hS 1, si)� s 0where the �rst relationship
omes from [if ttsos℄ and the se
ond from the indu
tionhypothesis applied to the premise hS 1, si ! s 0.The
ase [if�ns℄: Analogous.The
ase [while ttns℄: Assume thathwhile b do S , si ! s 00be
auseB[[b℄℄s = tt, hS , si ! s 0 and hwhile b do S , s 0i ! s 00The indu
tion hypothesis
an be applied to both of the premises hS , si ! s 0 andhwhile b do S , s 0i ! s 00 and giveshS , si)� s 0 and hwhile b do S , s 0i)� s 00Using Exer
ise 2.21 we gethS ; while b do S , si)� s 00Using [whilesos℄ and [if ttsos℄ (with B[[b℄℄s = tt) we get the �rst two steps of

42 2 Operational Semanti
shwhile b do S , si) hif b then (S ; while b do S) else skip, si) hS ; while b do S , si)� s 00and we have already argued for the last part.The
ase [while�ns℄: Straightforward. 2This
ompletes the proof of Lemma 2.27. The se
ond part of the theoremfollows from:Lemma 2.28 For every statement S ofWhile, states s and s 0 and natural numberk we have thathS , si)k s 0 implies hS , si ! s 0.So if the exe
ution of S from s terminates in the stru
tural operational semanti
sthen it will terminate in the same state in the natural semanti
s.Proof: The proof pro
eeds by indu
tion on the length of the derivation sequen
ehS , si)k s 0, that is by indu
tion on k.If k=0 then the result holds va
uously.To prove the indu
tion step we assume that the lemma holds for k � k0 andwe shall then prove that it holds for k0+1. We pro
eed by
ases on how the �rststep of hS , si)k0+1 s 0 is obtained, that is by inspe
ting the derivation tree forthe �rst step of
omputation in the stru
tural operational semanti
s.The
ase [asssos℄: Straightforward (and k0 = 0).The
ase [skipsos℄: Straightforward (and k0 = 0).The
ases [
omp 1sos℄ and [
omp 2sos℄: In both
ases we assume thathS 1;S 2, si)k0+1 s 00We
an now apply Lemma 2.19 and get that there exists a state s 0 and naturalnumbers k1 and k2 su
h thathS 1, si)k1 s 0 and hS 2, s 0i)k2 s 00where k1+k2=k0+1. The indu
tion hypothesis
an now be applied to ea
h of thesederivation sequen
es be
ause k1 � k0 and k2 � k0. So we gethS 1, si ! s 0 and hS 2, s 0i ! s 00

2.3 An equivalen
e result 43Using [
ompns℄ we now get the required hS 1;S 2, si ! s 00.The
ase [if ttsos℄: Assume that B[[b℄℄s = tt and thathif b then S 1 else S 2, si) hS 1, si)k0 s 0The indu
tion hypothesis
an be applied to the derivation sequen
e hS 1, si)k0 s 0and giveshS 1, si ! s 0The result now follows using [if ttns℄.The
ase [if�sos℄: Analogous.The
ase [whilesos℄: We havehwhile b do S , si) hif b then (S ; while b do S) else skip, si)k0 s 00The indu
tion hypothesis
an be applied to the k0 last steps of the derivationsequen
e and giveshif b then (S ; while b do S) else skip, si ! s 00and from Lemma 2.5 we get the requiredhwhile b do S , si ! s 00 2Proof of Theorem 2.26: For an arbitrary statement S and state s it followsfrom Lemmas 2.27 and 2.28 that if Sns[[S ℄℄s = s 0 then Ssos[[S ℄℄s = s 0 and vi
e versa.This suÆ
es for showing that the fun
tions Sns[[S ℄℄ and Ssos[[S ℄℄ must be equal: ifone is de�ned on a state s then so is the other, and therefore, if one is not de�nedon a state s then neither is the other. 2Exer
ise 2.29 Consider the extension of the languageWhile with the statementrepeat S until b. The natural semanti
s of the
onstru
t was
onsidered inExer
ise 2.7 and the stru
tural operational semanti
s in Exer
ise 2.17. Modify theproof of Theorem 2.26 so that the theorem applies to the extended language. 2Exer
ise 2.30 Consider the extension of the languageWhile with the statementfor x := a1 to a2 do S . The natural semanti
s of the
onstru
t was
onsidered inExer
ise 2.8 and the stru
tural operational semanti
s in Exer
ise 2.18. Modify theproof of Theorem 2.26 so that the theorem applies to the extended language. 2

44 2 Operational Semanti
sThe proof te
hnique employed in the proof of Theorem 2.26 may be summa-rized as follows: Proof Summary for While:Equivalen
e of two Operational Semanti
s1: Prove by indu
tion on the shape of derivation trees that for ea
h derivationtree in the natural semanti
s there is a
orresponding �nite derivationsequen
e in the stru
tural operational semanti
s.2: Prove by indu
tion on the length of derivation sequen
es that for ea
h�nite derivation sequen
e in the stru
tural operational semanti
s there isa
orresponding derivation tree in the natural semanti
s.When proving the equivalen
e of two operational semanti
s for a language withadditional programming
onstru
ts one may need to amend the above proof te
h-nique. One reason is that the equivalen
e result may have to be expressed dif-ferently from that of Theorem 2.26 (as will be the
ase if the extended languageis non-deterministi
). Also one might want to
onsider only some of the �nitederivation sequen
es, for example those ending in a terminal
on�guration.2.4 Extensions of WhileIn order to illustrate the power and weakness of the two approa
hes to operationalsemanti
s we shall
onsider various extensions of the language While. For ea
hextension we shall show how to modify the operational semanti
s.AbortionWe �rst extend While with the simple statement abort. The idea is that abortstops the exe
ution of the
omplete program. This means that abort behavesdi�erently from while true do skip in that it
auses the exe
ution to stop ratherthan loop. Also abort behaves di�erently from skip be
ause a statement followingabort will never be exe
uted whereas one following skip
ertainly will.Formally, the new syntax of statements is given by:S ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do S j abortWe shall not repeat the de�nitions of the sets of
on�gurations but ta
itly assumethat they are modi�ed so as to
orrespond to the extended syntax. The task thatremains, therefore, is to de�ne the new transition relations ! and).

2.4 Extensions of While 45The fa
t that abort stops the exe
ution of the program is modelled by ensuringthat the
on�gurations of the form habort, si are stu
k . Therefore the naturalsemanti
s of the extended language is still de�ned by the transition relation !of Table 2.1. So although the language and thereby the set of
on�gurations havebeen extended we do not modify the de�nition of the transition relation. Similarly,the stru
tural operational semanti
s of the extended language is still de�ned byTable 2.2.From the stru
tural operational semanti
s point of view it is
lear now thatabort and skip
annot be semanti
ally equivalent. This is be
ausehskip, si) sis the only derivation sequen
e for skip starting in s andhabort, siis the only derivation sequen
e for abort starting in s. Similarly, abort
annot besemanti
ally equivalent to while true do skip be
ausehwhile true do skip, si) hif true then (skip; while true do skip) else skip, si) hskip; while true do skip, si) hwhile true do skip, si) � � �is an in�nite derivation sequen
e for while true do skip whereas abort has none.Thus we shall
laim that the stru
tural operational semanti
s
aptures the informalexplanation given earlier.From the natural semanti
s point of view it is also
lear that skip and abort
annot be semanti
ally equivalent. However, it turns out that while true do skipand abort are semanti
ally equivalent! The reason is that in the natural semanti
swe are only
on
erned with exe
utions that terminate properly. So if we do nothave a derivation tree for hS , si ! s 0 then we
annot tell whether it is be
ause weentered a stu
k
on�guration or a looping exe
ution. We
an summarize this asfollows:Natural Semanti
s versus Stru
tural Operational Semanti
s� In a natural semanti
s we
annot distinguish between looping and abnormaltermination.� In a stru
tural operational semanti
s looping is re
e
ted by in�nite deriva-tion sequen
es and abnormal termination by �nite derivation sequen
es end-ing in a stu
k
on�guration.

46 2 Operational Semanti
sWe should note, however, that if abnormal termination is modelled by \normaltermination" in a spe
ial error
on�guration (in
luded in the set of terminal
on�g-urations) then we
an distinguish between the three statements in both semanti
styles.Exer
ise 2.31 Theorem 2.26 expresses that the natural semanti
s and the stru
-tural operational semanti
s of While are equivalent. Dis
uss whether or not asimilar result holds for While extended with abort. 2Exer
ise 2.32 Extend While with the statementassert b before SThe idea is that if b evaluates to true then we exe
ute S and otherwise the exe
utionof the
omplete program aborts. Extend the stru
tural operational semanti
sof Table 2.2 to express this (without assuming that While
ontains the abort-statement). Show that assert true before S is semanti
ally equivalent to S butthat assert false before S neither is equivalent to while true do skip norskip. 2Non-determinismThe se
ond extension of While has statements given byS ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do S j S 1 or S 2The idea is here that in S 1 or S 2 we
an non-deterministi
ally
hoose to exe
uteeither S 1 or S 2. So we shall expe
t that exe
ution of the statementx := 1 or (x := 2; x := x + 2)
ould result in a state where x has the value 1, but it
ould as well result in a statewhere x has the value 4.When spe
ifying the natural semanti
s we extend Table 2.1 with the two rules:[or 1ns℄ hS 1, si ! s 0hS 1 or S 2, si ! s 0[or 2ns℄ hS 2, si ! s 0hS 1 or S 2, si ! s 0Corresponding to the
on�guration hx := 1 or (x := 2; x := x+2), si we havederivation trees forhx := 1 or (x := 2; x := x+2), si ! s[x7!1℄

2.4 Extensions of While 47as well ashx := 1 or (x := 2; x := x+2), si ! s[x7!4℄It is important to note that if we repla
e x := 1 by while true do skip in theabove statement then we will only have one derivation tree, namely that forh(while true do skip) or (x := 2; x := x+2), si ! s[x7!4℄Turning to the stru
tural operational semanti
s we shall extend Table 2.2 withthe two axioms:[or 1sos℄ hS 1 or S 2, si) hS 1, si[or 2sos℄ hS 1 or S 2, si) hS 2, siFor the statement x := 1 or (x := 2; x := x+2) we have two derivation sequen
es:hx := 1 or (x := 2; x := x+2), si)� s[x7!1℄and hx := 1 or (x := 2; x := x+2), si)� s[x7!4℄If we repla
e x := 1 by while true do skip in the above statement then we stillhave two derivation sequen
es. One is in�niteh(while true do skip) or (x := 2; x := x+2), si) hwhile true do skip, si)3 hwhile true do skip, si) � � �and the other is �niteh(while true do skip) or (x := 2; x := x+2), si)� s[x7!4℄Comparing the natural semanti
s and the stru
tural operational semanti
s wesee that the latter
an
hoose the \wrong" bran
h of the or-statement whereasthe �rst always
hooses the \right" bran
h. This is summarized as follows:Natural Semanti
s versus Stru
tural Operational Semanti
s� In a natural semanti
s non-determinism will suppress looping, if possible.� In a stru
tural operational semanti
s non-determinism does not suppresslooping.

48 2 Operational Semanti
sExer
ise 2.33 Consider the statementx := �1; while x�0 do (x := x�1 or x := (�1)?x)Given a state s des
ribe the set of �nal states that may result a

ording to thenatural semanti
s. Further des
ribe the set of derivation sequen
es that are spe
-i�ed by the stru
tural operational semanti
s. Based on this dis
uss whether ornot you would regard the natural semanti
s as being equivalent to the stru
turaloperational semanti
s for this parti
ular statement. 2Exer
ise 2.34 We shall now extend While with the statementrandom(x)and the idea is that its exe
ution will
hange the value of x to be any positivenatural number. Extend the natural semanti
s as well as the stru
tural operationalsemanti
s to express this. Dis
uss whether random(x) is a super
uous
onstru
tin the
ase where While is also extended with the or
onstru
t. 2ParallelismWe shall now
onsider an extension of While with a parallel
onstru
t. So nowthe syntax of expressions is given byS ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do S j S 1 par S 2The idea is that both statements of S 1 par S 2 have to be exe
uted but that theexe
ution
an be interleaved. This means that a statement likex := 1 par (x := 2; x := x+2)
an give three di�erent results for x, namely 4, 1 and 3: If we �rst exe
ute x := 1and then x := 2; x := x+2 we get the �nal value 4. Alternatively, if we �rstexe
ute x := 2; x := x+2 and then x := 1 we get the �nal value 1. Finally, wehave the possibility of �rst exe
uting x := 2, then x := 1 and lastly x := x+2 andwe then get the �nal value 3.To express this in the stru
tural operational semanti
s we extend Table 2.2with the following rules:[par 1sos℄ hS 1, si) hS 01, s 0ihS 1 par S 2, si) hS 01 par S 2, s 0i[par 2sos℄ hS 1, si) s 0hS 1 par S 2, si) hS 2, s 0i

2.4 Extensions of While 49[par 3sos℄ hS 2, si) hS 02, s 0ihS 1 par S 2, si) hS 1 par S 02, s 0i[par 4sos℄ hS 2, si) s 0hS 1 par S 2, si) hS 1, s 0iThe �rst two rules take a

ount of the
ase where we begin by exe
uting the �rststep of statement S 1. If the exe
ution of S 1 is not fully
ompleted we modify the
on�guration so as to remember how far we have rea
hed. Otherwise only S 2 hasto be exe
uted and we update the
on�guration a

ordingly. The last two rulesare similar but for the
ase where we begin by exe
uting the �rst step of S 2.Using these rules we get the following derivation sequen
es for the examplestatement:hx := 1 par (x := 2; x := x+2), si) hx := 2; x := x+2, s[x7!1℄i) hx := x+2, s[x7!2℄i) s[x7!4℄hx := 1 par (x := 2; x := x+2), si) hx := 1 par x := x+2, s[x7!2℄i) hx := 1, s[x7!4℄i) s[x7!1℄and hx := 1 par (x := 2; x := x+2), si) hx := 1 par x := x+2, s[x7!2℄i) hx := x+2, s[x7!1℄i) s[x7!3℄Turning to the natural semanti
s we might start by extending Table 2.1 withthe two rules:hS 1, si ! s 0, hS 2, s 0i ! s 00hS 1 par S 2, si ! s 00hS 2, si ! s 0, hS 1, s 0i ! s 00hS 1 par S 2, si ! s 00However, it is easy to see that this will not do be
ause the rules only expressthat either S 1 is exe
uted before S 2 or vi
e versa. This means that we have lostthe ability to interleave the exe
ution of two statements. Furthermore, it seemsimpossible to be able to express this in the natural semanti
s be
ause we
onsiderthe exe
ution of a statement as an atomi
 entity that
annot be split into smaller

50 2 Operational Semanti
spie
es. This may be summarized as follows:Natural Semanti
s versus Stru
tural Operational Semanti
s� In a natural semanti
s the exe
ution of the immediate
onstituents is anatomi
 entity so we
annot express interleaving of
omputations.� In a stru
tural operational semanti
s we
on
entrate on the small steps ofthe
omputation so we
an easily express interleaving.Exer
ise 2.35 Consider an extension of While that in addition to the par-
onstru
t also
ontains the
onstru
tprote
t S endThe idea is that the statement S has to be exe
uted as an atomi
 entity so thatfor examplex := 1 par prote
t (x := 2; x := x+2) endonly has two possible out
omes namely 1 and 4. Extend the stru
tural operationalsemanti
s to express this. Can you spe
ify a natural semanti
s for the extendedlanguage? 2Exer
ise 2.36 Spe
ify a stru
tural operational semanti
s for arithmeti
 expres-sions where the individual parts of an expression may be
omputed in parallel.Try to prove that you still obtain the result that was spe
i�ed by A. 22.5 Blo
ks and pro
eduresWe now extend the language While with blo
ks
ontaining de
larations of vari-ables and pro
edures. In doing so we introdu
e a
ouple of important
on
epts:� variable and pro
edure environments, and� lo
ations and stores.We shall
on
entrate on the natural semanti
s and will
onsider dynami
 as wellas stati
 s
ope and non-re
ursive as well as re
ursive pro
edures.

2.5 Blo
ks and pro
edures 51Blo
ks and simple de
larationsWe �rst extend the language While with blo
ks
ontaining de
larations of lo
alvariables. The new language is
alled Blo
k and its syntax isS ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do S j begin DV S endwhere DV is a meta-variable ranging over the synta
ti

ategory De
V of variablede
larations. The syntax of variable de
larations is given by:DV ::= var x := a; DV j "where " is the empty de
laration. The idea is that the variables de
lared inside ablo
k begin DV S end are lo
al to it. So in a statement likebegin var y := 1;(x := 1;begin var x := 2; y := x+1 end;x := y+x)endthe x in y := x+1 relates to the lo
al variable x introdu
ed by var x := 2, whereasthe x in x := y+x relates to the global variable x that is also used in the statementx := 1. In both
ases the y refers to the y de
lared in the outer blo
k. Therefore,the statement y := x+1 assigns y the value 3, rather than 2, and the statementx := y+x assigns x the value 4, rather than 5.Before going into the details of how to spe
ify the semanti
s we shall de�ne theset DV(DV) of variables de
lared in DV :DV(var x := a; DV) = fxg [DV(DV)DV(") = ;We next de�ne the natural semanti
s. The idea will be to have one transi-tion system for ea
h of the synta
ti

ategories Stm and De
V. For statementsthe transition system is as in Table 2.1 but extended with the rule of Table 2.3.The transition system for variable de
larations has
on�gurations of the two formshDV , si and s and the idea is that the transition relation !D spe
i�es the rela-tionship between initial and �nal states as before:hDV , si !D s 0The relation!D for variable de
larations is given in Table 2.4. We generalize thesubstitution operation on states and write s 0[X 7�!s℄ for the state that is as s 0ex
ept for variables in the set X where it is as spe
i�ed by s. Formally,

52 2 Operational Semanti
s[blo
kns℄ hDV , si !D s 0, hS , s 0i ! s 00hbegin DV S end, si ! s 00[DV(DV) 7�!s℄Table 2.3: Natural semanti
s for statements of Blo
k[varns℄ hDV , s[x 7!A[[a℄℄s℄i !D s 0hvar x := a; DV , si !D s 0[nonens℄ h", si !D sTable 2.4: Natural semanti
s for variable de
larations(s 0[X 7�!s℄) x = (s x if x 2 Xs 0 x if x 62 XThis operation will ensure that lo
al variables are restored to their previous valueswhen the blo
k is left.Exer
ise 2.37 Use the natural semanti
s of Table 2.3 to show that exe
ution ofthe statementbegin var y := 1;(x := 1;begin var x := 2; y := x+1 end;x := y+x)endwill lead to a state where x has the value 4. 2It is somewhat harder to spe
ify a stru
tural operational semanti
s for the ex-tended language. One approa
h is to repla
e states with a stru
ture that is similarto the run-time sta
ks used in the implementation of blo
k stru
tured languages.Another is to extend the statements with fragments of the state. However, weshall not go further into this.Pro
eduresWe shall now extend the language Blo
k with pro
edure de
larations. The syntaxof the language Pro
 is:S ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do S j begin DV DP S end j
all pDV ::= var x := a; DV j "DP ::= pro
 p is S ; DP j "

2.5 Blo
ks and pro
edures 53Here p is a meta-variable ranging over the synta
ti

ategory Pname of pro
edurenames; in the
on
rete syntax there need not be any di�eren
e between pro
edurenames and variable names but in the abstra
t syntax it is
onvenient to be ableto distinguish between the two. Furthermore, DP is a meta-variable ranging overthe synta
ti

ategory De
P of pro
edure de
larations.We shall give three di�erent semanti
s of this language. They di�er in their
hoi
e of s
ope rules for variables and pro
edures:� dynami
 s
ope for variables as well as pro
edures,� dynami
 s
ope for variables but stati
 s
ope for pro
edures, and� stati
 s
ope for variables as well as pro
edures.To illustrate the di�eren
e
onsider the statementbegin var x := 0;pro
 p is x := x ? 2;pro
 q is
all p;begin var x := 5;pro
 p is x := x + 1;
all q; y := xendendIf dynami
 s
ope is used for variables as well as pro
edures then the �nal valueof y is 6. The reason is that
all q will
all the lo
al pro
edure p whi
h willupdate the lo
al variable x. If we use dynami
 s
ope for variables but stati
 s
opefor pro
edures then y gets the value 10. The reason is that now
all q will
allthe global pro
edure p and it will update the lo
al variable x. Finally, if we usestati
 s
ope for variables as well as pro
edures then y gets the value 5. The reasonis that
all q now will
all the global pro
edure p whi
h will update the globalvariable x so the lo
al variable x is un
hanged.Dynami
 s
ope rules for variables and pro
eduresThe general idea is that to exe
ute the statement
all p we shall exe
ute thebody of the pro
edure. This means that we have to keep tra
k of the asso
iationof pro
edure names with pro
edure bodies. To fa
ilitate this we shall introdu
ethe notion of a pro
edure environment. Given a pro
edure name the pro
edureenvironment envP will return the statement that is its body. So envP is an elementof

54 2 Operational Semanti
s[assns℄ envP ` hx := a, si ! s[x 7!A[[a℄℄s℄[skipns℄ envP ` hskip, si ! s[
ompns℄ envP ` hS 1, si ! s 0, envP ` hS 2, s 0i ! s 00envP ` hS 1;S 2, si ! s 00[ifttns℄ envP ` hS 1, si ! s 0envP ` hif b then S 1 else S 2, si ! s 0if B[[b℄℄s = tt[if�ns℄ envP ` hS 2, si ! s 0envP ` hif b then S 1 else S 2, si ! s 0if B[[b℄℄s = �[whilettns℄ envP ` hS , si ! s 0, envP ` hwhile b do S , s 0i ! s 00envP ` hwhile b do S , si ! s 00if B[[b℄℄s = tt[while�ns℄ envP ` hwhile b do S , si ! sif B[[b℄℄s = �[blo
kns℄ hDV , si !D s 0, updP(DP , envP) ` hS , s 0i ! s 00envP ` hbegin DV DP S end, si ! s 00[DV(DV) 7�!s℄[
allre
ns ℄ envP ` hS , si ! s 0envP ` h
all p, si ! s 0 where envP p = STable 2.5: Natural semanti
s for Pro
 with dynami
 s
ope rulesEnvP = Pname ,! StmThe next step will be to extend the natural semanti
s to take the environ-ment into a

ount. We shall extend the transition system for statements to havetransitions of the formenvP ` hS , si ! s 0The presen
e of the environment means that we
an always a

ess it and thereforeget hold of the bodies of de
lared pro
edures. The result of modifying Table 2.1to in
orporate this extra information is shown in Table 2.5.

2.5 Blo
ks and pro
edures 55Con
erning the rule for begin DV DP S end the idea is that we update thepro
edure environment so that the pro
edures de
lared in DP will be availablewhen exe
uting S . Given a global environment envP and a de
laration DP , theupdated pro
edure environment, updP(DP , envP), is spe
i�ed by:updP(pro
 p is S ; DP , envP) = updP(DP , envP [p 7!S ℄)updP(", envP) = envPAs the variable de
larations do not need to a

ess the pro
edure environmentit is not ne
essary to extend the transition system for de
larations with the extra
omponent. So for variable de
larations we still have transitions of the formhD , si !D s 0The relation is de�ned as for the language Blo
k, that is by Table 2.4.We
an now
omplete the spe
i�
ation of the semanti
s of blo
ks and pro
edure
alls. Note that in the rule [blo
kns℄ of Table 2.5 we use the updated environmentwhen exe
uting the body of the blo
k. In the rule [
allre
ns ℄ for pro
edure
allswe make use of the information provided by the environment. It follows thatpro
edures will always be re
ursive.Exer
ise 2.38 Consider the following statement of Pro
:begin pro
 fa
 is begin var z := x;if x = 1 then skipelse (x := x�1;
all fa
; y := z?y)end;(y := 1;
all fa
)endConstru
t a derivation tree for the exe
ution of this statement from a state s wheres x = 3. 2Exer
ise 2.39 Use the semanti
s to verify that the statementbegin var x := 0;pro
 p is x := x ? 2;pro
 q is
all p;begin var x := 5;pro
 p is x := x + 1;
all q; y := x

56 2 Operational Semanti
s[
allns℄ env 0P ` hS , si ! s 0envP ` h
all p, si ! s 0where envP p = (S , env 0P)[
allre
ns ℄ env 0P [p 7!(S , env 0P)℄ ` hS , si ! s 0envP ` h
all p, si ! s 0where envP p = (S , env 0P)Table 2.6: Pro
edure
alls in
ase of mixed s
ope rules (
hoose one)endend
onsidered earlier does indeed assign the expe
ted value to y. 2Stati
 s
ope rules for pro
eduresWe shall now modify the semanti
s of Pro
 to spe
ify stati
 s
ope rules for pro-
edures. The �rst step will be to extend the pro
edure environment envP so thatpro
edure names are asso
iated with their body as well as the pro
edure environ-ment at the point of de
laration. To this end we de�neEnvP = Pname ,! Stm � EnvPThis de�nition may seem problemati
 be
ause EnvP is de�ned in terms of itself.However, this is not really a problem be
ause a
on
rete pro
edure environmentalways will be built from smaller environments starting with the empty pro
edureenvironment. The fun
tion updP updating the pro
edure environment
an thenbe rede�ned as:updP(pro
 p is S ; DP , envP) = updP(DP , envP [p 7!(S , envP)℄)updP(", envP) = envPThe semanti
s of variable de
larations are una�e
ted and so is the semanti
s ofmost of the statements. Compared with Table 2.5 we shall only need to modify therules for pro
edure
alls. In the
ase where the pro
edures of Pro
 are assumedto be non-re
ursive we simply
onsult the pro
edure environment to determinethe body of the pro
edure and the environment at the point of de
laration. Thisis expressed by the rule [
allns℄ of Table 2.6. In the
ase where the pro
edures ofPro
 are assumed to be re
ursive we have to make sure that o

urren
es of
all pinside the body of p refer to the pro
edure itself. We shall therefore update thepro
edure environment to
ontain that information. This is expressed by the rule

2.5 Blo
ks and pro
edures 57[
allre
ns ℄ of Table 2.6. The remaining axioms and rules are as in Tables 2.5 (without[
allre
ns ℄) and 2.4. (Clearly a
hoi
e should be made between [
allns℄ or [
allre
ns ℄.)Exer
ise 2.40 Constru
t a statement that illustrates the di�eren
e between thetwo rules for pro
edure
all given in Table 2.6. Validate your
laim by
onstru
tingderivation trees for the exe
utions of the statement from a suitable state. 2Exer
ise 2.41 Use the semanti
s to verify that the statement of Exer
ise 2.39assigns the expe
ted value to y. 2Stati
 s
ope rules for variablesWe shall now modify the semanti
s of Pro
 to spe
ify stati
 s
ope rules for vari-ables as well as pro
edures. To a
hieve this we shall repla
e the states with twomappings: a variable environment that asso
iates a lo
ation with ea
h variable anda store that asso
iates a value with ea
h lo
ation. Formally, we de�ne a variableenvironment envV as an element ofEnvV = Var ! Lo
where Lo
 is a set of lo
ations. For the sake of simpli
ity we shall take Lo
 = Z.A store sto is an element ofStore = Lo
 [f next g ! Zwhere `next' is a spe
ial token used to hold the next free lo
ation. We shall needa fun
tionnew: Lo
 ! Lo
that given a lo
ation will produ
e the next one. In our
ase where Lo
 is Z wetake `new' to be the su

essor fun
tion on the integers.So rather than having a single mapping s from variables to values we havesplit it into two mappings envV and sto and the idea is that s = sto Æ envV . Todetermine the value of a variable x we shall �rst� determine the lo
ation l = envV x asso
iated with x and then� determine the value sto l asso
iated with the lo
ation l .Similarly, to assign a value v to a variable x we shall �rst� determine the lo
ation l = envV x asso
iated with x and then� update the store to have sto l = v .

58 2 Operational Semanti
s[varns℄ hDV , envV [x 7!l ℄, sto[l 7!v ℄[next7!new l ℄i !D (env 0V , sto 0)hvar x := a; DV , envV , stoi !D (env 0V , sto 0)where v = A[[a℄℄(stoÆenvV) and l = sto next[nonens℄ h", envV , stoi !D (envV , sto)Table 2.7: Natural semanti
s for variable de
larations using lo
ationsThe initial variable environment
ould for example map all variables to thelo
ation 0 and the initial store
ould for example map `next' to 1. The variableenvironment (and the store) is updated by the variable de
larations. The transitionsystem for variable de
larations is therefore modi�ed to have the formhDV , envV , stoi !D (env 0V , sto 0)be
ause a variable de
laration will modify the variable environment as well as thestore. The relation is de�ned in Table 2.7. Note that we use `sto next' to determinethe lo
ation l to be asso
iated with x in the variable environment. Also the storeis updated to hold the
orre
t value for l as well as `next'. Finally note that thede
lared variables will get positive lo
ations.To obtain stati
 s
oping for variables we shall extend the pro
edure environ-ment to hold the variable environment at the point of de
laration. Therefore envPwill now be an element ofEnvP = Pname ,! Stm � EnvV � EnvPThe pro
edure environment is updated by the pro
edure de
larations as before,the only di�eren
e being that the
urrent variable environment is supplied as anadditional parameter. The fun
tion updP is now de�ned by:updP(pro
 p is S ; DP , envV , envP) =updP(DP , envV , envP [p 7!(S , envV , envP)℄)updP(", envV , envP) = envPFinally, the transition system for statements will have the form:envV , envP ` hS , stoi ! sto 0so given a variable environment and a pro
edure environment we get a relationshipbetween an initial store and a �nal store. The modi�
ation of Tables 2.5 and 2.6is rather straightforward and is given in Table 2.8. Note that in the new rule forblo
ks there is no analogue of s 00[DV(DV) 7�!s℄ as the values of variables only
anbe obtained by a

essing the environment.

2.5 Blo
ks and pro
edures 59[assns℄ envV , envP ` hx := a, stoi ! sto[l 7!v ℄where l = envV x and v = A[[a℄℄(stoÆenvV)[skipns℄ envV , envP ` hskip, stoi ! sto[
ompns℄ envV , envP ` hS 1, stoi ! sto 0, envV , envP ` hS 2, sto 0i ! sto 00envV , envP ` hS 1;S 2, stoi ! sto 00[ifttns℄ envV , envP ` hS 1, stoi ! sto 0envV , envP ` hif b then S 1 else S 2, stoi ! sto 0if B[[b℄℄(stoÆenvV) = tt[if�ns℄ envV , envP ` hS 2, stoi ! sto 0envV , envP ` hif b then S 1 else S 2, stoi ! sto 0if B[[b℄℄(stoÆenvV) = �[whilettns℄ envV , envP ` hS , stoi ! sto 0,envV , envP ` hwhile b do S , sto 0i ! sto 00envV , envP ` hwhile b do S , stoi ! sto 00if B[[b℄℄(stoÆenvV) = tt[while�ns℄ envV , envP ` hwhile b do S , stoi ! stoif B[[b℄℄(stoÆenvV) = �[blo
kns℄ hDV , envV , stoi !D (env 0V , sto 0),env 0V , env 0P ` hS , sto 0i ! sto 00envV , envP ` hbegin DV DP S end, stoi ! sto 00where env 0P = updP(DP , env 0V , envP)[
allns℄ env 0V , env 0P ` hS , stoi ! sto 0envV , envP ` h
all p, stoi ! sto 0where envP p = (S , env 0V , env 0P)[
allre
ns ℄ env 0V , env 0P [p 7!(S , env 0V , env 0P)℄ ` hS , stoi ! sto 0envV , envP ` h
all p, stoi ! sto 0where envP p = (S , env 0V , env 0P)Table 2.8: Natural semanti
s for Pro
 with stati
 s
ope rules

60 2 Operational Semanti
sExer
ise 2.42 Apply the natural semanti
s of Table 2.8 to the fa
torial statementof Exer
ise 2.38 and a store where the lo
ation for x has the value 3. 2Exer
ise 2.43 Verify that the semanti
s applied to the statement of Exer
ise 2.39gives the expe
ted result. 2Exer
ise 2.44 * An alternative semanti
s of the language While is de�ned bythe axioms and rules [assns℄, [skipns℄, [
ompns℄, [ifttns℄, [if�ns℄, [whilettns℄ and [while�ns℄ ofTable 2.8. Formulate and prove the equivalen
e between this semanti
s and thatof Table 2.1. 2Exer
ise 2.45 Modify the syntax of pro
edure de
larations so that pro
edurestake two
all-by-value parameters:DP ::= pro
 p(x 1,x 2) is S ; DP j "S ::= � � � j
all p(a1,a2)Pro
edure environments will now be elements ofEnvP = Pname ,! Var � Var � Stm � EnvV � EnvPModify the semanti
s given above to handle this language. In parti
ular, providenew rules for pro
edure
alls: one for non-re
ursive pro
edures and another forre
ursive pro
edures. Constru
t statements that illustrate how the new rules areused. 2Exer
ise 2.46 Now
onsider the language Pro
 and the task of a
hieving mutualre
ursion. The pro
edure environment is now de�ned to be an element ofEnvP = Pname ,! Stm � EnvV � EnvP � De
PThe idea is that if envP p = (S , env 0V , env 0P , D?P) then D?P
ontains all thepro
edure de
larations that are made in the same blo
k as p. De�ne upd0P byupd0P (pro
 p is S ; DP , envV , envP , D?P) =upd0P (DP , envV , envP [p 7!(S , envV , envP ,D?P)℄, D?P)upd0P (", envV , envP ,D?P) = envPNext rede�ne updP byupdP (DP , envV , envP) = upd0P (DP , envV , envP , DP)Modify the semanti
s of Pro
 so as to obtain mutual re
ursion among pro
eduresde�ned in the same blo
k. Illustrate how the new rules are used on an interestingstatement of your
hoi
e.(Hint: Convin
e yourself, that [
allre
ns ℄ is the only rule that needs to be
hanged;then
onsider whether or not the fun
tion updP might be useful in the new de�-nition of [
allre
ns ℄.) 2

2.5 Blo
ks and pro
edures 61Exer
ise 2.47 We shall
onsider a variant of the semanti
s where we use thevariable environment rather than the store to hold the next free lo
ation. Soassume thatEnvV = Var [f next g ! Lo
and Store = Lo
 ! ZAs before we shall write sto Æ envV for the state obtained by �rst using envV to�nd the lo
ation of the variable and then sto to �nd the value of the lo
ation. The
lauses of Table 2.7 are now repla
ed byhDV , envV [x 7!l ℄[next7!new l ℄, sto[l 7!v ℄i !D (env 0V , sto 0)hvar x := a; DV , envV , stoi !D (env 0V , sto 0)where v = A[[a℄℄(stoÆenvV) and l = envV nexth", envV , stoi !D (envV , sto)Constru
t a statement that
omputes di�erent results under the two variants of thesemanti
s. Validate your
laim by
onstru
ting derivation trees for the exe
utionsof the statement from a suitable state. 2

62 2 Operational Semanti
s

Chapter 3Provably Corre
t ImplementationA formal spe
i�
ation of the semanti
s of a programming language is useful whenimplementing it. In parti
ular, it be
omes possible to argue about the
orre
tnessof the implementation. We shall illustrate this by showing how to translate thelanguage While into a stru
tured form of assembler
ode for an abstra
t ma
hineand we shall then prove that the translation is
orre
t. The idea is that we �rst de-�ne the meaning of the abstra
t ma
hine instru
tions by an operational semanti
s.Then we de�ne translation fun
tions that will map expressions and statements inthe While language into sequen
es of su
h instru
tions. The
orre
tness resultwill then state that if we� translate a program into
ode, and� exe
ute the
ode on the abstra
t ma
hine,then we get the same result as was spe
i�ed by the semanti
 fun
tions Sns andSsos of the previous
hapter.3.1 The abstra
t ma
hineWhen spe
ifying the abstra
t ma
hine it is
onvenient �rst to present its
on�gu-rations and next its instru
tions and their meanings.The abstra
t ma
hine AM has
on�gurations of the form h
, e, si where�
 is the sequen
e of instru
tions (or
ode) to be exe
uted,� e is the evaluation sta
k, and� s is the storage.We use the evaluation sta
k to evaluate arithmeti
 and boolean expressions. For-mally, it is a list of values, so writing 63

64 3 Provably Corre
t ImplementationSta
k = (Z [T)?we have e 2 Sta
k. For the sake of simpli
ity we shall assume that the storageis similar to the state, that is s 2 State, and it is used to hold the values ofvariables.The instru
tions of AM are given by the abstra
t syntaxinst ::= push-n j add j mult j subj true j false j eq j le j and j negj fet
h-x j store-xj noop j bran
h(
,
) j loop(
,
)
 ::= " j inst :
where " is the empty sequen
e. We shall write Code for the synta
ti

ategory ofsequen
es of instru
tions, so
 is a meta-variable ranging over Code. Thereforewe haveh
, e, si 2 Code � Sta
k � StateA
on�guration is a terminal (or �nal)
on�guration if its
ode
omponent is theempty sequen
e, that is if it has the form h", e, si.The semanti
s of the instru
tions of the abstra
t ma
hine is given by an oper-ational semanti
s. As in the previous
hapter it will be spe
i�ed by a transitionsystem. The
on�gurations have the form h
, e, si as des
ribed above and thetransition relation � spe
i�es how to exe
ute the instru
tions:h
, e, si � h
 0, e 0, s 0iThe idea is that one step of exe
ution will transform the
on�guration h
, e, siinto h
 0, e 0, s 0i. The relation is de�ned by the axioms of Table 3.1 where we(ambiguously) use the notation `:' both for appending two instru
tion sequen
esand for prepending an element to a sequen
e. The evaluation sta
k is representedas a sequen
e of elements. It has the top of the sta
k to the left and we shall write" for the empty sequen
e.In addition to the usual arithmeti
 and boolean operations we have six instru
-tions that modify the evaluation sta
k: The operation push-n pushes a
onstantvalue n onto the sta
k and true and false push the
onstants tt and �, respe
-tively, onto the sta
k. The operation fet
h-x pushes the value bound to x ontothe sta
k whereas store-x pops the topmost element o� the sta
k and updates thestorage so that the popped value is bound to x . The instru
tion bran
h(
1,
2)will also
hange the
ow of
ontrol: If the top of the sta
k is the value tt (that issome boolean expression has been evaluated to true) then the sta
k is popped and
1 is to be exe
uted next. Otherwise, if the top element of the sta
k is � then itwill be popped and
2 will be exe
uted next.

3.1 The abstra
t ma
hine 65hpush-n:
, e, si � h
, N [[n℄℄:e, sihadd:
, z 1:z 2:e, si � h
, (z 1+z 2):e, si if z 1, z 22Zhmult:
, z 1:z 2:e, si � h
, (z 1?z 2):e, si if z 1, z 22Zhsub:
, z 1:z 2:e, si � h
, (z 1�z 2):e, si if z 1, z 22Zhtrue:
, e, si � h
, tt:e, sihfalse:
, e, si � h
, �:e, siheq:
, z 1:z 2:e, si � h
, (z 1=z 2):e, si if z 1, z 22Zhle:
, z 1:z 2:e, si � h
, (z 1�z 2):e, si if z 1, z 22Zhand:
, t1:t2:e, si �8<: h
; tt : e; sih
;� : e; si if t1=tt and t2=ttif t1=� or t2=�, t1, t22Thneg:
, t :e, si � 8<: h
;� : e; sih
; tt : e; si if t=ttif t=�hfet
h-x :
, e, si � h
, (s x):e, sihstore-x :
, z :e, si � h
, e, s[x 7!z ℄i if z2Zhnoop:
, e, si � h
, e, sihbran
h(
1,
2):
, t :e, si � 8<: h
1 :
; e; sih
2 :
; e; si if t=ttif t=�hloop(
1,
2):
, e, si �h
1:bran
h(
2:loop(
1,
2), noop):
, e, siTable 3.1: Operational semanti
s for AMThere are two instru
tions that
hange the
ow of
ontrol. The instru
tionbran
h(
1,
2) will be used to implement the
onditional: as des
ribed aboveit will
hoose the
ode
omponent
1 or
2 depending on the
urrent value ontop of the sta
k. If the top of the sta
k is not a truth value the ma
hine willhalt as there is no next
on�guration (sin
e the meaning of bran
h(� � �,� � �) isnot de�ned in that
ase). A looping
onstru
t su
h as the while-
onstru
t ofWhile
an be implemented using the instru
tion loop(
1,
2). The semanti
sof this instru
tion is de�ned by rewriting it to a
ombination of other
onstru
tsin
luding the bran
h-instru
tion and itself. We shall see shortly how this
an beused.The operational semanti
s of Table 3.1 is indeed a stru
tural operational se-

66 3 Provably Corre
t Implementationmanti
s for AM. Corresponding to the derivation sequen
es of Chapter 2 we shallde�ne a
omputation sequen
e for AM. Given a sequen
e
 of instru
tions and astorage s, a
omputation sequen
e for
 and s is either� a �nite sequen
e
0,
1,
2, � � � ,
kof
on�gurations satisfying
0 = h
, ", si and
i �
i+1 for 0�i<k, k�0, andwhere there is no
 su
h that
k �
, or it is� an in�nite sequen
e
0,
1,
2, � � �of
on�gurations satisfying
0 = h
, ", si and
i �
i+1 for 0�i.Note that initial
on�gurations always have an empty evaluation sta
k. A
ompu-tation sequen
e is� terminating if and only if it is �nite, and� looping if and only if it is in�nite.A terminating
omputation sequen
e may end in a terminal
on�guration (that isa
on�guration with an empty
ode
omponent) or in a stu
k
on�guration (forexample hadd, ", si).Example 3.1 Consider the instru
tion sequen
epush-1:fet
h-x:add:store-xAssuming that the initial storage s has s x = 3 we gethpush-1:fet
h-x:add:store-x, ", si� hfet
h-x:add:store-x, 1, si� hadd:store-x, 3:1, si� hstore-x, 4, si� h", ", s[x7!4℄iThe
omputation now stops be
ause there is no next step. This is an example ofa terminating
omputation sequen
e. 2Example 3.2 Consider the
odeloop(true, noop)

3.1 The abstra
t ma
hine 67We havehloop(true, noop), ", si� htrue:bran
h(noop:loop(true, noop), noop), ", si� hbran
h(noop:loop(true, noop), noop), tt, si� hnoop:loop(true, noop), ", si� hloop(true, noop), ", si� � � �and the unfolding of the loop-instru
tion is repeated. This is an example of alooping
omputation sequen
e. 2Exer
ise 3.3 Consider the
odepush-0:store-z:fet
h-x:store-r:loop(fet
h-r:fet
h-y:le,fet
h-y:fet
h-r:sub:store-r:push-1:fet
h-z:add:store-z)Determine the fun
tion
omputed by this
ode. 2Properties of AMThe semanti
s we have spe
i�ed for the abstra
t ma
hine is
on
erned with theexe
ution of individual instru
tions and is therefore
lose in spirit to the stru
turaloperational semanti
s studied in Chapter 2. When proving the
orre
tness of the
ode generation we shall need a few results analogous to those holding for thestru
tural operational semanti
s. As their proofs follow the same lines as thosefor the stru
tural operational semanti
s we shall leave them as exer
ises and onlyreformulate the proof te
hnique from Se
tion 2.2:Indu
tion on the Length of Computation Sequen
es1: Prove that the property holds for all
omputation sequen
es of length 0.2: Prove that the property holds for all other
omputation sequen
es: As-sume that the property holds for all
omputation sequen
es of length atmost k (this is
alled the indu
tion hypothesis) and show that it holds for
omputation sequen
es of length k+1.The indu
tion step of a proof following this te
hnique will often be done by a
aseanalysis on the �rst instru
tion of the
ode
omponent of the
on�guration.

68 3 Provably Corre
t ImplementationExer
ise 3.4 (Essential) By analogy with Exer
ise 2.21 prove thatif h
1, e1, si �k h
 0, e 0, s 0i then h
1:
2, e1:e2, si �k h
 0:
2, e 0:e2, s 0iThis means that we
an extend the
ode
omponent as well as the sta
k
omponentwithout
hanging the behaviour of the ma
hine. 2Exer
ise 3.5 (Essential) By analogy with Lemma 2.19 prove that ifh
1:
2, e, si �k h", e 00, s 00ithen there exists a
on�guration h", e 0, s 0i and natural numbers k1 and k2 withk1+k2=k su
h thath
1, e, si �k1 h", e 0, s 0i and h
2, e 0, s 0i �k2 h", e 00, s 00iThis means that the exe
ution of a
omposite sequen
e of instru
tions
an be splitinto two pie
es. 2The notion of determinism is de�ned as for the stru
tural operational semanti
s.So the semanti
s of an abstra
t ma
hine is deterministi
 if for all
hoi
es of
,
0and
00:
 �
0 and
 �
00 imply
0 =
00Exer
ise 3.6 (Essential) Show that the ma
hine semanti
s of Table 3.1 is de-terministi
. Dedu
e that there is exa
tly one
omputation sequen
e starting in a
on�guration h
, e, si. 2The exe
ution fun
tion MWe shall de�ne the meaning of a sequen
e of instru
tions as a (partial) fun
tionfrom State to State:M: Code ! (State ,! State)It is given byM[[
℄℄ s = 8<: s 0 if h
, ", si �� h", e, s 0iundef otherwiseThe fun
tion is well-de�ned be
ause of Exer
ise 3.6. Note that the de�nition doesnot require the sta
k
omponent of the terminal
on�guration to be empty but itdoes require the
ode
omponent to be so.The abstra
t ma
hine AM may seem far removed from more traditional ma-
hine ar
hite
tures. In the next few exer
ises we shall gradually bridge this gap.

3.2 Spe
i�
ation of the translation 69Exer
ise 3.7 AM refers to variables by their name rather than by their address.The abstra
t ma
hine AM1 di�ers from AM in that� the
on�gurations have the form h
, e, mi where
 and e are as in AM andm, the memory , is a (�nite) list of values, that is m 2 Z?, and� the instru
tions fet
h-x and store-x are repla
ed by instru
tions get-nand put-n where n is a natural number (an address).Spe
ify the operational semanti
s of the ma
hine. You may write m[n℄ to sele
tthe nth value in the list m (when n is positive but less than or equal to the lengthof m). What happens if we referen
e an address that is outside the memory? 2Exer
ise 3.8 The next step is to get rid of the operations bran
h(� � �,� � �) andloop(� � �,� � �). The idea is to introdu
e instru
tions for de�ning labels and forjumping to labels. The abstra
t ma
hine AM2 di�ers from AM1 (of Exer
ise 3.7)in that� the
on�gurations have the form hp
,
, e, mi where
, e and m are as beforeand p
 is the program
ounter (a natural number) pointing to an instru
tionin
, and� the instru
tions bran
h(� � �,� � �) and loop(� � �,� � �) are repla
ed by the in-stru
tions label-l , jump-l and jumpfalse-l where l is a label (a naturalnumber).The idea is that we will exe
ute the instru
tion in
 that p
 points to and in most
ases this will
ause the program
ounter to be in
remented by 1. The instru
-tion label-l has no e�e
t ex
ept updating the program
ounter. The instru
tionjump-l will move the program
ounter to the unique instru
tion label-l (if itexists). The instru
tion jumpfalse-l will only move the program
ounter to theinstru
tion label-l if the value on top of the sta
k is �; if it is tt the program
ounter will be in
remented by 1.Spe
ify an operational semanti
s for AM2. You may write
[p
℄ for the in-stru
tion in
 pointed to by p
 (if p
 is positive and less than or equal to thelength of
). What happens if the same label is de�ned more than on
e? 2Exer
ise 3.9 Finally, we shall
onsider an abstra
t ma
hine AM3 where the la-bels of the instru
tions jump-l and jumpfalse-l of Exer
ise 3.8 are absolute ad-dresses; so jump-7 means jump to the 7th instru
tion of the
ode (rather than tothe instru
tion label-7). Spe
ify the operational semanti
s of the ma
hine. Whathappens if we jump to an instru
tion that is not in the
ode? 23.2 Spe
i�
ation of the translationWe shall now study how to generate
ode for the abstra
t ma
hine.

70 3 Provably Corre
t ImplementationExpressionsArithmeti
 and boolean expressions will be evaluated on the evaluation sta
k ofthe ma
hine and the
ode to be generated must e�e
t this. This is a

omplishedby the (total) fun
tionsCA: Aexp ! Codeand CB: Bexp ! Codespe
i�ed in Table 3.2. Note that the
ode generated for binary expressions
onsistsCA[[n℄℄ = push-nCA[[x ℄℄ = fet
h-xCA[[a1+a2℄℄ = CA[[a2℄℄:CA[[a1℄℄:addCA[[a1 ? a2℄℄ = CA[[a2℄℄:CA[[a1℄℄:multCA[[a1�a2℄℄ = CA[[a2℄℄:CA[[a1℄℄:subCB[[true℄℄ = trueCB[[false℄℄ = falseCB[[a1 = a2℄℄ = CA[[a2℄℄:CA[[a1℄℄:eqCB[[a1�a2℄℄ = CA[[a2℄℄:CA[[a1℄℄:leCB[[:b℄℄ = CB[[b℄℄:negCB[[b1^b2℄℄ = CB[[b2℄℄:CB[[b1℄℄:andTable 3.2: Translation of expressionsof the
ode for the right argument followed by that for the left argument and�nally the appropriate instru
tion for the operator. In this way it is ensuredthat the arguments appear on the evaluation sta
k in the order required by theinstru
tions (in Table 3.1). Note that CA and CB are de�ned
ompositionally.Example 3.10 For the arithmeti
 expression x+1 we
al
ulate the
ode as fol-lows: CA[[x+1℄℄ = CA[[1℄℄:CA[[x℄℄:add = push-1:fet
h-x :add 2Exer
ise 3.11 It is
lear that A[[(a1+a2)+a3℄℄ equals A[[a1+(a2+a3)℄℄. Show thatit is not the
ase that CA[[(a1+a2)+a3℄℄ equals CA[[a1+(a2+a3)℄℄. Nonetheless,show that CA[[(a1+a2)+a3℄℄ and CA[[a1+(a2+a3)℄℄ do in fa
t behave similar to oneanother. 2

3.2 Spe
i�
ation of the translation 71StatementsThe translation of statements into abstra
t ma
hine
ode is given by the (total)fun
tionCS: Stm ! Codespe
i�ed in Table 3.3. The
ode generated for an arithmeti
 expression a ensuresCS[[x := a℄℄ = CA[[a℄℄:store-xCS[[skip℄℄ = noopCS[[S 1;S 2℄℄ = CS[[S 1℄℄:CS [[S 2℄℄CS[[if b then S 1 else S 2℄℄ = CB[[b℄℄:bran
h(CS[[S 1℄℄,CS [[S 2℄℄)CS[[while b do S ℄℄ = loop(CB[[b℄℄,CS[[S ℄℄)Table 3.3: Translation of statements in Whilethat the value of the expression is on top of the evaluation sta
k when it hasbeen
omputed. So in the
ode for x := a it suÆ
es to append the
ode for awith the instru
tion store-x . This instru
tion assigns x the appropriate valueand additionally pops the sta
k. For the skip-statement we generate the noop-instru
tion. For sequen
ing of statements we just
on
atenate the two instru
tionsequen
es. When generating
ode for the
onditional, the
ode for the booleanexpression will ensure that a truth value will be pla
ed on top of the evaluationsta
k and the bran
h-instru
tion will then inspe
t (and pop) that value andsele
t the appropriate pie
e of
ode. Finally, the
ode for the while-
onstru
t usesthe loop-instru
tion. Again we may note that CS is de�ned in a
ompositionalmanner.Example 3.12 The
ode generated for the fa
torial statement
onsidered earlieris as follows:CS[[y:=1; while :(x=1) do (y:=y ? x; x:=x�1)℄℄= CS[[y:=1℄℄:CS[[while :(x=1) do (y:=y ? x; x:=x�1)℄℄= CA[[1℄℄:store-y:loop(CB[[:(x=1)℄℄,CS [[y:=y ? x; x:=x�1℄℄)= push-1:store-y:loop(CB[[x=1℄℄:neg,CS[[y:=y ? x℄℄:CS[[x:=x�1℄℄)...= push-1:store-y:loop(push-1:fet
h-x:eq:neg,fet
h-x:fet
h-y:mult:store-y:push-1:fet
h-x:sub:store-x) 2

72 3 Provably Corre
t ImplementationExer
ise 3.13 Use CS to generate
ode for the statementz:=0; while y�x do (z:=z+1; x:=x�y)Tra
e the
omputation of the
ode starting from a storage where x is 17 and yis 5. 2Exer
ise 3.14 Extend While with the
onstru
t repeat S until b and spe
ifyhow to generate
ode for it. Note that the de�nition has to be
ompositional andthat it is not ne
essary to extend the instru
tion set of the abstra
t ma
hine. 2Exer
ise 3.15 Extend While with the
onstru
t for x := a1 to a2 do S andspe
ify how to generate
ode for it. As in Exer
ise 3.14 the de�nition has to be
ompositional but you may have to introdu
e an instru
tion
opy that dupli
atesthe element on top of the evaluation sta
k. 2The semanti
 fun
tion SamThe meaning of a statement S
an now be obtained by �rst translating it into
ode for AM and next exe
uting the
ode on the abstra
t ma
hine. The e�e
t ofthis is expressed by the fun
tionSam: Stm ! (State ,! State)de�ned bySam[[S ℄℄ = (M Æ CS)[[S ℄℄Exer
ise 3.16 Modify the
ode generation so as to translateWhile into
ode forthe abstra
t ma
hine AM1 of Exer
ise 3.7. You may assume the existen
e of afun
tionenv : Var ! Nthat maps variables to their addresses. Apply the
ode generation fun
tion to thefa
torial statement of Exer
ise 1.1 and exe
ute the
ode so obtained starting froma memory where x is 3. 2Exer
ise 3.17 Modify the
ode generation so as to translateWhile into
ode forthe abstra
t ma
hine AM2 of Exer
ise 3.8. Be
areful to generate unique labels,for example by having \the next unused label" as an additional parameter to the
ode generation fun
tions. Apply the
ode generation fun
tion to the fa
torialstatement and exe
ute the
ode so obtained starting from a memory where x hasthe value 3. 2

3.3 Corre
tness 733.3 Corre
tnessThe
orre
tness of the implementation amounts to showing that, if we �rst trans-late a statement into
ode for AM and then exe
ute that
ode, then we mustobtain the same result as spe
i�ed by the operational semanti
s of While.ExpressionsThe
orre
tness of the implementation of arithmeti
 expressions is expressed bythe following lemma:Lemma 3.18 For all arithmeti
 expressions a we havehCA[[a℄℄, ", si �� h", A[[a℄℄s, siFurthermore, all intermediate
on�gurations of this
omputation sequen
e willhave a non-empty evaluation sta
k.Proof: The proof is by stru
tural indu
tion on a. Below we shall give the prooffor three illustrative
ases, leaving the remaining ones as an exer
ise.The
ase n: We have CA[[n℄℄ = push-n and from Table 3.1 we gethpush-n, ", si � h", N [[n℄℄, siSin
e A[[n℄℄s = N [[n℄℄ (see Table 1.1) we have
ompleted the proof in this
ase.The
ase x : We have CA[[x ℄℄ = fet
h-x and from Table 3.1 we gethfet
h-x , ", si � h", (s x), siSin
e A[[x ℄℄s = s x this is the required result.The
ase a1+a2: We have CA[[a1+a2℄℄ = CA[[a2℄℄:CA[[a1℄℄:add. The indu
tionhypothesis applied to a1 and a2 gives thathCA[[a1℄℄, ", si �� h", A[[a1℄℄s, siand hCA[[a2℄℄, ", si �� h", A[[a2℄℄s, siIn both
ases all intermediate
on�gurations will have a non-empty evaluationsta
k. Using Exer
ise 3.4 we get thathCA[[a2℄℄:CA[[a1℄℄:add, ", si �� hCA[[a1℄℄:add, A[[a2℄℄s, siApplying the exer
ise on
e more we get that

74 3 Provably Corre
t ImplementationhCA[[a1℄℄:add, A[[a2℄℄s, si �� hadd, (A[[a1℄℄s):(A[[a2℄℄s), siUsing the transition relation for add given in Table 3.1 we gethadd, (A[[a1℄℄s):(A[[a2℄℄s), si � h", A[[a1℄℄s+A[[a2℄℄s, siIt is easy to
he
k that all intermediate
on�gurations have a non-empty evaluationsta
k. Sin
e A[[a1+a2℄℄s = A[[a1℄℄s + A[[a2℄℄s we have the desired result. 2We have a similar result for boolean expressions:Exer
ise 3.19 (Essential) Show that for all boolean expressions b we havehCB[[b℄℄, ", si �� h", B[[b℄℄s, siFurthermore, show that all intermediate
on�gurations of this
omputation se-quen
e will have a non-empty evaluation sta
k. 2StatementsWhen formulating the
orre
tness of the result for statements we have a
hoi
ebetween using� the natural semanti
s, or� the stru
tural operational semanti
s.Here we shall use the natural semanti
s but in the next se
tion we sket
h the proofin the
ase where the stru
tural operational semanti
s is used.The
orre
tness of the translation of statements is expressed by the followingtheorem:Theorem 3.20 For every statement S of While we have Sns[[S ℄℄ = Sam[[S ℄℄.This theorem relates the behaviour of a statement under the natural semanti
swith the behaviour of the
ode on the abstra
t ma
hine under its operationalsemanti
s. In analogy with Theorem 2.26 it expresses two properties:� If the exe
ution of S from some state terminates in one of the semanti
s thenit also terminates in the other and the resulting states will be equal.� Furthermore, if the exe
ution of S from some state loops in one of the se-manti
s then it will also loop in the other.The theorem is proved in two stages as expressed by Lemmas 3.21 and 3.22 below.We shall �rst prove:

3.3 Corre
tness 75
Lemma 3.21 For every statement S of While and states s and s 0, we have thatif hS , si ! s 0 then hCS[[S ℄℄, ", si �� h", ", s 0iSo if the exe
ution of S from s terminates in the natural semanti
s then theexe
ution of the
ode for S from storage s will terminate and the resulting statesand storages will be equal.Proof: We pro
eed by indu
tion on the shape of the derivation tree for hS , si!s 0.The
ase [assns℄: We assume thathx :=a, si!s 0where s 0=s[x 7!A[[a℄℄s℄. From Table 3.3 we haveCS[[x :=a℄℄ = CA[[a℄℄:store-xFrom Lemma 3.18 applied to a we gethCA[[a℄℄, ", si �� h", A[[a℄℄s, siand then Exer
ise 3.4 gives the �rst part ofhCA[[a℄℄:store-x , ", si �� hstore-x , (A[[a℄℄s), si� h", ", s[x 7!A[[a℄℄s℄iand the se
ond part follows from the operational semanti
s for store-x given inTable 3.1. Sin
e s 0 = s[x 7!A[[a℄℄s℄ this
ompletes the proof.The
ase [skipns℄: Straightforward.The
ase [
ompns℄: Assume thathS 1;S 2, si ! s 00holds be
ausehS 1, si ! s 0 and hS 2, s 0i ! s 00From Table 3.3 we haveCS[[S 1;S 2℄℄ = CS[[S 1℄℄:CS[[S 2℄℄We shall now apply the indu
tion hypothesis to the premises hS 1, si ! s 0 andhS 2, s 0i ! s 00 and we gethCS[[S 1℄℄, ", si �� h", ", s 0i

76 3 Provably Corre
t Implementationand hCS[[S 2℄℄, ", s 0i �� h", ", s 00iUsing Exer
ise 3.4 we then havehCS[[S 1℄℄:CS[[S 2℄℄, ", si �� hCS[[S 2℄℄, ", s 0i �� h", ", s 00iand the result follows.The
ase [if ttns℄: Assume thathif b then S 1 else S 2, si ! s 0be
ause B[[b℄℄s = tt andhS 1, si ! s 0From Table 3.3 we get thatCS[[if b then S 1 else S 2℄℄ = CB[[b℄℄:bran
h(CS[[S 1℄℄, CS[[S 2℄℄)Using Exer
ises 3.19 and 3.4 we get the �rst part ofhCB[[b℄℄:bran
h(CS[[S 1℄℄, CS[[S 2℄℄), ", si�� hbran
h(CS[[S 1℄℄, CS[[S 2℄℄), (B[[b℄℄s), si� hCS[[S 1℄℄, ", si�� h", ", s 0iThe se
ond part follows from the de�nition of the meaning of the instru
tionbran
h in the
ase where the element on top of the evaluation sta
k is tt (whi
his the value of B[[b℄℄s). The third part of the
omputation sequen
e
omes fromapplying the indu
tion hypothesis to the premise hS 1, si ! s 0.The
ase [if�ns℄: Analogous.The
ase [while ttns℄: Assume thathwhile b do S , si ! s 00be
ause B[[b℄℄s = tt,hS , si ! s 0 and hwhile b do S , s 0i ! s 00From Table 3.3 we haveCS[[while b do S ℄℄ = loop(CB[[b℄℄, CS[[S ℄℄)and get

3.3 Corre
tness 77hloop(CB[[b℄℄, CS[[S ℄℄), ", si� hCB[[b℄℄:bran
h(CS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), noop), ", si�� hbran
h(CS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), noop), (B[[b℄℄s), si� hCS [[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), ", siHere the �rst part follows from the meaning of the loop-instru
tion (see Table 3.1)and the se
ond part from Exer
ises 3.19 and 3.4. Sin
e B[[b℄℄s = tt the third partfollows from the meaning of the bran
h-instru
tion. The indu
tion hypothesis
an now be applied to the premises hS , si ! s 0 and hwhile b do S , s 0i ! s 00 andgives hCS[[S ℄℄, ", si �� h", ", s 0ihloop(CB[[b℄℄, CS[[S ℄℄), ", s 0i �� h", ", s 00iso using Exer
ise 3.4 we gethCS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), ", si�� hloop(CB[[b℄℄, CS[[S ℄℄), ", s 0i�� h", ", s 00iThe
ase [while�ns℄: Assume that hwhile b do S , si ! s 0 holds be
ause B[[b℄℄s = �and then s = s 0. We havehloop(CB[[b℄℄, CS[[S ℄℄), ", si� hCB[[b℄℄:bran
h(CS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), noop), ", si�� hbran
h(CS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), noop), (B[[b℄℄s), si� hnoop, ", si� h", ", siusing the de�nitions of the loop-, bran
h- and noop-instru
tions in Table 3.1together with Exer
ises 3.19 and 3.4. 2This proves Lemma 3.21. The se
ond part of the theorem follows from:Lemma 3.22 For every statement S of While and states s and s 0, we have thatif hCS[[S ℄℄, ", si �k h", e, s 0i then hS , si ! s 0 and e = "So if the exe
ution of the
ode for S from a storage s terminates then the naturalsemanti
s of S from s will terminate in a state being equal to the storage of theterminal
on�guration.

78 3 Provably Corre
t ImplementationProof: We shall pro
eed by indu
tion on the length k of the
omputation sequen
eof the abstra
t ma
hine. If k = 0 the result holds va
uously be
ause CS[[S ℄℄ = "
annot o

ur. So assume that it holds for k � k0 and we shall prove that it holdsfor k = k0+1. We pro
eed by
ases on the statement S .The
ase x :=a: We then have CS[[x := a℄℄ = CA[[a℄℄:store-x so assume thathCA[[a℄℄:store-x , ", si �k0+1 h", e, s 0iThen by Exer
ise 3.5 there must be a
on�guration of the form h", e 00, s 00i su
hthat hCA[[a℄℄, ", si �k1 h", e 00, s 00ihstore-x , e 00, s 00i �k2 h", e, s 0iwhere k1 + k2 = k0 + 1. From Lemma 3.18 and Exer
ise 3.6 we get that e 00 mustbe (A[[a℄℄s) and s 00 must be s. Using the semanti
s of store-x we therefore seethat s 0 is s[x 7!A[[a℄℄s℄ and e is ". It now follows from [assns℄ that hx :=a, si!s 0.The
ase skip: Straightforward.The
ase S 1;S 2: Assume thathCS[[S 1℄℄:CS[[S 2℄℄, ", si �k0+1 h", e, s 00iThen by Exer
ise 3.5 there must be a
on�guration of the form h", e 0, s 0i su
h thathCS[[S 1℄℄, ", si �k1 h", e 0, s 0ihCS[[S 2℄℄, e 0, s 0i �k2 h", e, s 00iwhere k1 + k2 = k0 + 1. The indu
tion hypothesis
an now be applied to the �rstof these
omputation sequen
es be
ause k1 � k0 and giveshS 1, si ! s 0 and e 0 = "Thus we have hCS[[S 2℄℄, ", s 0i �k2 h", e, s 00i and sin
e k2 � k0 the indu
tionhypothesis
an be applied to this
omputation sequen
e and giveshS 2, s 0i ! s 00 and e = "The rule [
ompns℄ now gives hS 1;S 2, si ! s 00 as required.The
ase if b then S 1 else S 2: The
ode generated for the
onditional isCB[[b℄℄:bran
h(CS[[S 1℄℄, CS[[S 2℄℄)so we assume thathCB[[b℄℄:bran
h(CS[[S 1℄℄, CS[[S 2℄℄), ", si �k0+1 h", e, s 0i

3.3 Corre
tness 79Then by Exer
ise 3.5 there must be a
on�guration of the form h", e 00, s 00i su
hthat hCB[[b℄℄, ", si �k1 h", e 00, s 00iand hbran
h(CS[[S 1℄℄, CS[[S 2℄℄), e 00, s 00i �k2 h", e, s 0iwhere k1 + k2 = k0 + 1. From Exer
ises 3.19 and 3.6 we get that e 00 must beB[[b℄℄s and s 00 must be s. We shall now assume that B[[b℄℄s = tt. Then there mustbe a
on�guration hCS[[S 1℄℄, ", si su
h that(CS[[S 1℄℄, ", si �k2�1 h", e, s 0iThe indu
tion hypothesis
an now be applied to this
omputation sequen
e be
ausek2 � 1 � k0 and we gethS 1, si ! s 0 and e = "The rule [if ttns℄ gives the required hif b then S 1 else S 2, si ! s 0. The
ase whereB[[b℄℄s = � is similar.The
ase while b do S : The
ode for the while-loop is loop(CB[[b℄℄, CS[[S ℄℄) andwe therefore assume thathloop(CB[[b℄℄, CS[[S ℄℄), ", si �k0+1 h", e, s 00iUsing the de�nition of the loop-instru
tion this means that the
omputationsequen
e
an be rewritten ashloop(CB[[b℄℄, CS[[S ℄℄), ", si� hCB[[b℄℄:bran
h(CS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), noop), ", si�k0 h", e, s 00iA

ording to Exer
ise 3.5 there will then be a
on�guration h", e 0, s 0i su
h thathCB[[b℄℄, ", si �k1 h", e 0, s 0iand hbran
h(CS[[S ℄℄:loop(CB[[b℄℄, CS [[S ℄℄), noop), e 0, s 0i �k2 h", e, s 00iwhere k1 + k2 = k0. From Exer
ises 3.19 and 3.6 we get e 0 = B[[b℄℄s and s 0 = s.We now have two
ases.In the �rst
ase assume that B[[b℄℄s = �. We then have

80 3 Provably Corre
t Implementationhbran
h(CS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), noop), B[[b℄℄s, si� hnoop, ", si� h", ", siso e = " and s = s 00. Using rule [while�ns℄ we get hwhile b do S , si ! s 00 as required.In the se
ond
ase assume that B[[b℄℄s = tt. Then we havehbran
h(CS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), noop), B[[b℄℄s, si� hCS[[S ℄℄:loop(CB[[b℄℄, CS[[S ℄℄), ", si�k2�1h", e, s 00iWe then pro
eed very mu
h as in the
ase of the
omposition statement and get a
on�guration h", e 0, s 0i su
h thathCS[[S ℄℄, ", si �k3 h", e 0, s 0ihloop(CB[[b℄℄, CS[[S ℄℄), e 0, s 0i �k4 h", e, s 00iwhere k3 + k4 = k2 � 1. Sin
e k3 � k0 we
an apply the indu
tion hypothesis tothe �rst of these
omputation sequen
es and gethS , si ! s 0 and e 0 = "We
an then use that k4 � k0 and apply the indu
tion hypothesis to the
ompu-tation sequen
e hloop(CB[[b℄℄, CS [[S ℄℄), ", s 0i �k4 h", e, s 00i and gethwhile b do S , s 0i ! s 00 and e = "Using rule [while ttns℄ we then get hwhile b do S , si ! s 00 as required. This
ompletesthe proof of the lemma. 2The proof te
hnique employed in the above proof may be summarized as fol-lows: Proof Summary for While:Corre
tness of Implementation1: Prove by indu
tion on the shape of derivation trees that for ea
h derivationtree in the natural semanti
s there is a
orresponding �nite
omputationsequen
e on the abstra
t ma
hine.2: Prove by indu
tion on the length of
omputation sequen
es that for ea
h �-nite
omputation sequen
e obtained from exe
uting a statement ofWhileon the abstra
t ma
hine there is a
orresponding derivation tree in thenatural semanti
s.

3.4 An alternative proof te
hnique 81Note the similarities between this proof te
hnique and that for showing the equiv-alen
e of two operational semanti
s (see Se
tion 2.3). Again one has to be
arefulwhen adapting this approa
h to a language with additional programming
on-stru
ts or a di�erent ma
hine language.Exer
ise 3.23 Consider the \optimized"
ode generation fun
tion CS 0 that is asCS of Table 3.3 ex
ept that CS 0[[skip℄℄ = ". Would this
ompli
ate the proof ofTheorem 3.20? 2Exer
ise 3.24 Extend the proof of Theorem 3.20 to hold for theWhile languageextended with repeat S until b. The
ode generated for this
onstru
t wasstudied in Exer
ise 3.14 and its natural semanti
s in Exer
ise 2.7. 2Exer
ise 3.25 Prove that the
ode generated for AM1 in Exer
ise 3.16 is
orre
t.What assumptions do you need to make about env? 23.4 An alternative proof te
hniqueIn Theorem 3.20 we proved the
orre
tness of the implementation with respe
t tothe natural semanti
s. It is obvious that the implementation will also be
orre
twith respe
t to the stru
tural operational semanti
s, that isSsos[[S ℄℄ = Sam[[S ℄℄ for all statements S of Whilebe
ause we showed in Theorem 2.26 that the natural semanti
s is equivalent tothe stru
tural operational semanti
s. However, one might argue that it would beeasier to give a dire
t proof of the
orre
tness of the implementation with respe
tto the stru
tural operational semanti
s, be
ause both approa
hes are based on theidea of spe
ifying the individual steps of the
omputation. We shall
omment uponthis shortly.A dire
t proof of the
orre
tness result with respe
t to the stru
tural opera-tional semanti
s
ould pro
eed as follows. We shall de�ne a bisimulation relation� between the
on�gurations of the stru
tural operational semanti
s and those ofthe operational semanti
s for AM. It is de�ned byhS , si � hCS[[S ℄℄, ", sis � h", ", sifor all statements S and states s. The �rst stage will then be to prove that when-ever one step of the stru
tural operational semanti
s
hanges the
on�gurationthen there is a sequen
e of steps in the semanti
s of AM that will make a similar
hange in the
on�guration of the abstra
t ma
hine:Exer
ise 3.26 * Show that if

82 3 Provably Corre
t Implementation
sos �
am and
sos)
0sosthen there exists a
on�guration
0am su
h that
am �+
0am and
0sos �
0amArgue that this means that if hS , si)� s 0 then hCS[[S ℄℄, ", si �� h", ", s 0i. 2The se
ond part of the proof is to show that whenever AM makes a sequen
eof moves from a
on�guration with an empty evaluation sta
k to another
on�gu-ration with an empty evaluation sta
k, then the stru
tural operational semanti
s
an make a similar
hange of
on�gurations. Note that AM may have to makemore than one step to arrive at a
on�guration with an empty sta
k, due to theway it evaluates expressions; in the stru
tural operational semanti
s, however,expressions are evaluated as part of a single step.Exer
ise 3.27 ** Assume that
sos �
 1am and
 1am �
 2am � � � � �
 kamwhere k>1 and only
 1am and
 kam have empty evaluation sta
ks (that is, are of theform h
, ", si). Show that there exists a
on�guration
0sos su
h that
sos)
0sos and
0sos �
 kamArgue that this means that if hCS[[S ℄℄, ", si �� h", ", s 0i then hS , si)� s 0. 2Exer
ise 3.28 Show that Exer
ises 3.26 and 3.27 together
onstitute a dire
tproof of Ssos[[S ℄℄ = Sam[[S ℄℄, for all statements S of While. 2The su

ess of this approa
h relies on the two semanti
s pro
eeding in lo
k-step: that one is able to �nd
on�gurations in the two derivation sequen
es that
orrespond to one another (as spe
i�ed by the bisimulation relation). Often thisis not possible and then one has to raise the level of abstra
tion for one of thesemanti
s. This is exa
tly what happens when the stru
tural operational semanti
sis repla
ed by the natural semanti
s: we do not
are about the individual steps ofthe exe
ution but only on the result.The proof te
hnique employed in the above sket
h of proof may be summarizedas follows:

3.4 An alternative proof te
hnique 83Proof Summary for While:Corre
tness of Implementation using Bisimulation1: Prove that one step in the stru
tural operational semanti
s
an be simu-lated by a non-empty sequen
e of steps on the abstra
t ma
hine. Showthat this extends to sequen
es of steps in the stru
tural operationalsemanti
s.2: Prove that a
arefully sele
ted non-empty sequen
e of steps on the ab-stra
t ma
hine
an be simulated by a step in the stru
tural operationalsemanti
s. Show that this extends to more general sequen
es of steps onthe abstra
t ma
hine.Again, this method needs to be modi�ed when
onsidering a programming lan-guage with additional
onstru
ts or a di�erent abstra
t ma
hine.Exer
ise 3.29 * Consider the following, seemingly inno
ent, modi�
ation of thestru
tural operational semanti
s of Table 2.2 in whi
h [whilesos℄ is repla
ed by thetwo axioms:hwhile b do S , si) hS ; while b do S , si if B[[b℄℄s = tthwhile b do S , si) s if B[[b℄℄s = �Show that the modi�ed semanti
 fun
tion, S 0sos, satis�esSsos[[S ℄℄ = S 0sos[[S ℄℄ for all statements S of WhileInvestigate whether or not this
ompli
ates the proofs of (analogues of) Exer
ises3.26 and 3.27. 2

84 3 Provably Corre
t Implementation

Chapter 4Denotational Semanti
sIn the operational approa
h we were interested in how a program is exe
uted.This is
ontrary to the denotational approa
h where we are merely interested inthe e�e
t of exe
uting a program. By e�e
t we here mean an asso
iation betweeninitial states and �nal states. The idea then is to de�ne a semanti
 fun
tion forea
h synta
ti

ategory. It maps ea
h synta
ti

onstru
t to a mathemati
al obje
t,often a fun
tion, that des
ribes the e�e
t of exe
uting that
onstru
t.The hallmark of denotational semanti
s is that semanti
 fun
tions are de�ned
ompositionally, that is� there is a semanti

lause for ea
h of the basis elements of the synta
ti

ategory, and� for ea
h method of
onstru
ting a
omposite element (in the synta
ti

ate-gory) there is a semanti

lause de�ned in terms of the semanti
 fun
tionapplied to the immediate
onstituents of the
omposite element.The fun
tions A and B de�ned in Chapter 1 are examples of denotational de�ni-tions: the mathemati
al obje
ts asso
iated with arithmeti
 expressions are fun
-tions in State ! Z and those asso
iated with boolean expressions are fun
tions inState ! T. The fun
tions Sns and Ssos asso
iate mathemati
al obje
ts with ea
hstatement, namely partial fun
tions in State ,! State. However, they are notexamples of denotational de�nitions be
ause they are not de�ned
ompositionally.4.1 Dire
t style semanti
s: spe
i�
ationThe e�e
t of exe
uting a statement S is to
hange the state so we shall de�ne themeaning of S to be a partial fun
tion on states:Sds: Stm ! (State ,! State) 85

86 4 Denotational Semanti
sSds[[x := a℄℄s = s[x 7!A[[a℄℄s℄Sds[[skip℄℄ = idSds[[S 1 ; S 2℄℄ = Sds[[S 2℄℄ Æ Sds[[S 1℄℄Sds[[if b then S 1 else S 2℄℄ =
ond(B[[b℄℄, Sds[[S 1℄℄, Sds[[S 2℄℄)Sds[[while b do S ℄℄ = FIX Fwhere F g =
ond(B[[b℄℄, g Æ Sds[[S ℄℄, id)Table 4.1: Denotational semanti
s for WhileThis is also the fun
tionality of Sns and Ssos and the need for partiality is againdemonstrated by the statement while true do skip. The de�nition is summarizedin Table 4.1 and we explain it in detail below; in parti
ular, we shall de�ne theauxiliary fun
tions `
ond' and FIX.For assignment the
lauseSds[[x := a℄℄s = s[x 7!A[[a℄℄s℄ensures that if Sds[[x := a℄℄s = s 0 then s 0 x = A[[a℄℄s and s 0 y = s y for y 6=x . The
lause for skip expresses that no state
hange takes pla
e: the fun
tion id is theidentity fun
tion on State so Sds[[skip℄℄s = s.For sequen
ing the
lause isSds[[S 1 ; S 2℄℄ = Sds[[S 2℄℄ Æ Sds[[S 1℄℄So the e�e
t of exe
uting S 1 ; S 2 is the fun
tional
omposition of the e�e
t ofexe
uting S 1 and that of exe
uting S 2. Fun
tional
omposition is de�ned su
h thatif one of the fun
tions is unde�ned on a given argument then their
omposition isunde�ned as well. Given a state s, we therefore haveSds[[S 1 ; S 2℄℄s= (Sds[[S 2℄℄ Æ Sds[[S 1℄℄)s= 8>>>>>>>>>><>>>>>>>>>>:
s 00 if there exists s 0 su
h that Sds[[S 1℄℄s = s 0and Sds[[S 2℄℄s 0 = s 00undef if Sds[[S 1℄℄s = undefor if there exists s 0 su
h that Sds[[S 1℄℄s = s 0but Sds[[S 2℄℄s 0 = undefIt follows that the sequen
ing
onstru
t will only give a de�ned result if both
omponents do.For
onditional the
lause is

4.1 Dire
t style semanti
s: spe
i�
ation 87Sds[[if b then S 1 else S 2℄℄ =
ond(B[[b℄℄, Sds[[S 1℄℄, Sds[[S 2℄℄)and the auxiliary fun
tion `
ond' has fun
tionality
ond: (State ! T) � (State ,! State) � (State ,! State)! (State ,! State)and is de�ned by
ond(p, g1, g2) s = 8<: g1 s if p s = ttg2 s if p s = �The �rst parameter to `
ond' is a fun
tion that, when supplied with an argument,will sele
t either the se
ond or the third parameter of `
ond' and then supply thatparameter with the same argument. Thus we haveSds[[if b then S 1 else S 2℄℄ s=
ond(B[[b℄℄, Sds[[S 1℄℄, Sds[[S 2℄℄) s= 8>>>>>><>>>>>>: s 0 if B[[b℄℄s = tt and Sds[[S 1℄℄s = s 0or if B[[b℄℄s = � and Sds[[S 2℄℄s = s 0undef if B[[b℄℄s = tt and Sds[[S 1℄℄s = undefor if B[[b℄℄s = � and Sds[[S 2℄℄s = undefSo if the sele
ted bran
h gives a de�ned result then so does the
onditional. Notethat sin
e B[[b℄℄ is a total fun
tion, B[[b℄℄s
annot be undef.De�ning the e�e
t of while b do S is a major task. To motivate the a
tualde�nition we �rst observe that the e�e
t of while b do S must equal that ofif b then (S ; while b do S) else skipUsing the parts of Sds that have already been de�ned, this givesSds[[while b do S ℄℄ =
ond(B[[b℄℄, Sds[[while b do S ℄℄ Æ Sds[[S ℄℄, id) (*)Note that we
annot use (*) as the de�nition of Sds[[while b do S ℄℄ be
ause thenSds would not be a
ompositional de�nition. However, (*) expresses thatSds[[while b do S ℄℄ must be a �xed point of the fun
tional F de�ned byF g =
ond(B[[b℄℄, g Æ Sds[[S ℄℄, id)that is Sds[[while b do S ℄℄ = F (Sds[[while b do S ℄℄). In this way we will get a
ompositional de�nition of Sds be
ause when de�ning F we only apply Sds to theimmediate
onstituents of while b do S and not to the
onstru
t itself. Thus wewrite

88 4 Denotational Semanti
sSds[[while b do S ℄℄ = FIX Fwhere F g =
ond(B[[b℄℄, g Æ Sds[[S ℄℄, id)to indi
ate that Sds[[while b do S ℄℄ is a �xed point of F . The fun
tionality of theauxiliary fun
tion FIX isFIX: ((State ,! State) ! (State ,! State)) ! (State ,! State)Example 4.1 Consider the statementwhile :(x = 0) do skipIt is easy to verify that the
orresponding fun
tional F 0 is de�ned by(F 0 g) s = 8<: g s if s x 6= 0s if s x = 0The fun
tion g1 de�ned byg1 s = 8<: undef if s x 6= 0s if s x = 0is a �xed point of F 0 be
ause(F 0 g1) s = 8<: g1 s if s x 6= 0s if s x = 0= 8<: undef if s x 6= 0s if s x = 0= g1 sNext we
laim that the fun
tion g2 de�ned byg2 s = undef for all s
annot be a �xed point for F 0. The reason is that if s 0 is a state with s 0 x = 0then (F 0 g2) s 0 = s 0 whereas g2 s 0 = undef. 2Unfortunately, this does not suÆ
e for de�ning Sds[[while b do S ℄℄. We fa
etwo problems:� there are fun
tionals that have more than one �xed point, and� there are fun
tionals that have no �xed point at all.

4.1 Dire
t style semanti
s: spe
i�
ation 89The fun
tional F 0 of Example 4.1 has more than one �xed point. In fa
t, everyfun
tion g 0 of State ,! State satisfying g 0 s = s if s x = 0 will be a �xed pointof F 0.To give an example of a fun
tional that has no �xed points
onsider F 1 de�nedby F 1 g = 8<: g1 if g = g2g2 otherwiseIf g1 6=g2 then
learly there will be no fun
tion g0 su
h that F 1 g0 = g0. Thus F 1has no �xed points at all.Exer
ise 4.2 Determine the fun
tional F asso
iated with the statementwhile :(x=0) do x := x�1using the semanti
 equations of Table 4.1. Consider the following partial fun
tionsof State ,! State:g1 s = undef for all sg2 s = 8<: s[x7!0℄ if s x � 0undef if s x < 0g3 s = 8<: s[x7!0℄ if s x � 0s if s x < 0g4 s = s[x7!0℄ for all sg5 s = s for all sDetermine whi
h of these fun
tions are �xed points of F . 2Exer
ise 4.3 Consider the following fragment of the fa
torial statementwhile :(x=1) do (y := y?x; x := x�1)Determine the fun
tional F asso
iated with this statement. Determine at leasttwo di�erent �xed points for F . 2Requirements on the �xed pointOur solution to the two problems listed above will be to develop a frameworkwhere� we impose requirements on the �xed points and show that there is at mostone �xed point ful�lling these requirements, and

90 4 Denotational Semanti
s� all fun
tionals originating from statements in While do have a �xed pointthat satis�es these requirements.To motivate our
hoi
e of requirements let us
onsider the exe
ution of a state-ment while b do S from a state s0. There are three possible out
omes:A: it terminates,B: it loops lo
ally , that is there is a
onstru
t in S that loops, orC: it loops globally , that is the outer while-
onstru
t loops.We shall now investigate what
an be said about the fun
tional F and its �xedpoints in ea
h of the three
ases.The
ase A: In this
ase the exe
ution of while b do S from s0 terminates. Thismeans that there are states s1, � � �, sn su
h thatB[[b℄℄ s i = 8<: tt if i<n� if i=nand Sds[[S ℄℄ s i = s i+1 for i<nAn example of a statement and a state satisfying these
onditions is the statementwhile 0�x do x := x�1and any state where x has a non-negative value.Let g0 be any �xed point of F , that is assume that F g0 = g0. In the
asewhere i<n we
al
ulateg0 s i = (F g0) s i=
ond(B[[b℄℄, g0 Æ Sds[[S ℄℄, id) s i= g0 (Sds[[S ℄℄ s i)= g0 s i+1In the
ase where i=n we getg0 sn = (F g0) sn=
ond(B[[b℄℄, g0 Æ Sds[[S ℄℄, id) sn= id sn= snThus every �xed point g0 of F will satisfy

4.1 Dire
t style semanti
s: spe
i�
ation 91g0 s0 = snso in this
ase we do not obtain any additional requirements that will help us to
hoose one of the �xed points as the preferred one.The
ase B: In this
ase the exe
ution of while b do S from s0 loops lo
ally .This means that there are states s1, � � �, sn su
h thatB[[b℄℄s i = tt for i�nand Sds[[S ℄℄s i = 8<: s i+1 for i<nundef for i=nAn example of a statement and a state satisfying these
onditions is the statementwhile 0�x do (if x=0 then (while true do skip)else x := x�1)and any state where x has a non-negative value.Let g0 be any �xed point of F , that is F g0 = g0. In the
ase where i<n weobtaing0 s i = g0 s i+1just as in the previous
ase. However, in the
ase where i=n we getg0 sn = (F g0) sn=
ond(B[[b℄℄, g0 Æ Sds[[S ℄℄, id) sn= (g0 Æ Sds[[S ℄℄) sn= undefThus any �xed point g0 of F will satisfyg0 s0 = undefso, again, in this
ase we do not obtain any additional requirements that will helpus to
hoose one of the �xed points as the preferred one.The
ase C: The potential di�eren
e between �xed points
omes to light when we
onsider the possibility that the exe
ution of while b do S from s0 loops globally .This means that there are in�nitely many states s1, � � � su
h thatB[[b℄℄s i = tt for all iand

92 4 Denotational Semanti
sSds[[S ℄℄s i = s i+1 for all i.An example of a statement and a state satisfying these
onditions is the statementwhile :(x=0) do skipand any state where x is not equal to 0.Let g0 be any �xed point of F , that is F g0 = g0. As in the previous
ases weget g0 s i = g0 s i+1for all i�0. Thus we haveg0 s0 = g0 s i for all iand we
annot determine the value of g0 s0 in this way. This is the situation inwhi
h the various �xed points of F may di�er.This is not surprising be
ause the statement while :(x=0) do skip of Example4.1 has the fun
tional F 0 given by(F 0 g) s = 8<: g s if s x 6= 0s if s x = 0and any partial fun
tion g of State ,! State satisfying g s = s if s x = 0 willindeed be a �xed point of F 0. However, our
omputational experien
e tells us thatwe wantSds[[while :(x=0) do skip℄℄s0 = 8<: undef if s0 x 6= 0s0 if s0 x = 0in order to re
ord the looping. Thus our preferred �xed point of F 0 is the fun
tiong0 de�ned byg0 s = 8<: undef if s x 6= 0s if s x = 0The property that distinguishes g0 from some other �xed point g 0 of F 0 is thatwhenever g0 s = s 0 then we also have g 0 s = s 0 but not vi
e versa.Generalizing this experien
e leads to the following requirement: the desired�xed point FIX F should be some partial fun
tion g0: State ,! State su
h that� g0 is a �xed point of F , that is F g0 = g0, and� if g is another �xed point of F , that is F g = g , theng0 s = s 0 implies g s = s 0

4.2 Fixed point theory 93for all
hoi
es of s and s 0.Note that if g0 s = undef then there are no requirements on g s.Exer
ise 4.4 Determine whi
h of the �xed points
onsidered in Exer
ise 4.2 isthe desired �xed point, if any. 2Exer
ise 4.5 Determine the desired �xed point of the fun
tional
onstru
ted inExer
ise 4.3. 24.2 Fixed point theoryTo prepare for a framework that guarantees the existen
e of the desired �xed pointFIX F we shall reformulate the requirements to FIX F in a slightly more formalway. The �rst step will be to formalize the requirement that FIX F shares itsresults with all other �xed points. To do so we de�ne an ordering v on partialfun
tions of State ,! State. We setg1 v g2when the partial fun
tion g1: State ,! State shares its results with the partialfun
tion g2: State ,! State in the sense thatif g1 s = s 0 then g2 s = s 0for all
hoi
es of s and s 0.Example 4.6 Let g1, g2, g3 and g4 be partial fun
tions in State ,! State de�nedas follows:g1 s = s for all sg2 s = 8<: s if s x � 0undef otherwiseg3 s = 8<: s if s x = 0undef otherwiseg4 s = 8<: s if s x � 0undef otherwiseThen we have

94 4 Denotational Semanti
sg1 v g1,g2 v g1, g2 v g2,g3 v g1, g3 v g2, g3 v g3, g3 v g4, andg4 v g1, g4 v g4.It is neither the
ase that g2 v g4 nor that g4 v g2. Pi
torially, the ordering maybe expressed as follows1: � g1� g2 � g4� g3QQQQ �������� QQQQ
The idea is that the smaller elements are at the bottom of the pi
ture and that thelines indi
ate the order between the elements. However, we shall not draw lineswhen there already is a \broken line", so the fa
t that g3 v g1 is left impli
it inthe pi
ture. 2Exer
ise 4.7 Let g1, g2 and g3 be de�ned as follows:g1 s = 8<: s if s x is evenundef otherwiseg2 s = 8<: s if s x is a primeundef otherwiseg3 s = sFirst, determine the ordering among these partial fun
tions. Next, determine apartial fun
tion g4 su
h that g4 v g1, g4 v g2 and g4 v g3. Finally, determine apartial fun
tion g5 su
h that g1 v g5, g2 v g5 and g5 v g3 but g5 is neither equalto g1, g2 nor g3. 2Exer
ise 4.8 (Essential) An alternative
hara
terization of the ordering v onState ,! State isg1 v g2 if and only if graph(g1) � graph(g2) (*)where graph(g) is the graph of the partial fun
tion g as de�ned in Appendix A.Prove that (*) is indeed
orre
t. 21Su
h a diagram is sometimes
alled a Hasse diagram.

4.2 Fixed point theory 95The set State ,! State equipped with the ordering v is an example of apartially ordered set as we shall see in Lemma 4.13 below. In general, a partiallyordered set is a pair (D , vD) where D is a set and vD is a relation on D satisfyingd vD d (re
exivity)d1 vD d2 and d2 vD d3 imply d1 vD d3 (transitivity)d1 vD d2 and d2 vD d1 imply d1 = d2 (anti-symmetry)The relation vD is said to be a partial order on D and we shall often omit thesubs
ript D of vD and write v. O

asionally, we may write d1 w d2 instead ofd2 v d1 and we shall say that d2 shares its information with d1. An element d ofD satisfyingd v d 0 for all d 0 of Dis
alled a least element of D and we shall say that it
ontains no information.Fa
t 4.9 If a partially ordered set (D , v) has a least element d then d is unique.Proof: Assume that D has two least elements d1 and d2. Sin
e d1 is a leastelement we have d1 v d2. Sin
e d2 is a least element we also have d2 v d1. Theanti-symmetry of the ordering v then gives that d1 = d2. 2This fa
t permits us to talk about the least element of D , if one exists, and weshall denote it by ?D or simply ? (pronoun
ed \bottom").Example 4.10 Let S be a non-empty set and de�neP(S) = f K j K � S gThen (P(S), �) is a partially ordered set be
ause� � is re
exive: K � K� � is transitive: if K 1 � K 2 and K 2 � K 3 then K 1 � K 3� � is anti-symmetri
: if K 1 � K 2 and K 2 � K 1 then K 1 = K 2In the
ase where S = fa,b,
g the ordering
an be depi
ted as follows:

96 4 Denotational Semanti
s� fa,b,
g� fa,bg � fa,
g � fb,
g� fag � fbg � f
g� ;HHHHHHHH ����������������HHHHHHHH ��������HHHHHHHH�������� HHHHHHHH
Also, (P(S), �) has a least element, namely ;. 2Exer
ise 4.11 Show that (P(S), �) is a partially ordered set and determine theleast element. Draw a pi
ture of the ordering when S = fa,b,
g. 2Exer
ise 4.12 Let S be a non-empty set and de�neP�n(S) = f K j K is �nite and K � S gVerify that (P�n(S), �) and (P�n(S), �) are partially ordered sets. Do bothpartially ordered sets have a least element for all
hoi
es of S? 2Lemma 4.13 (State ,! State, v) is a partially ordered set. The partial fun
tion?: State ,! State de�ned by? s = undef for all sis the least element of State ,! State.Proof: We shall �rst prove that v ful�ls the three requirements to a partial order:Clearly, g v g holds be
ause g s = s 0 trivially implies that g s = s 0 so v is are
exive ordering.To see that it is a transitive ordering assume that g1 v g2 and g2 v g3 and weshall prove that g1 v g3. Assume that g1 s = s 0. From g1 v g2 we get g2 s = s 0and then g2 v g3 gives that g3 s = s 0.To see that it is an anti-symmetri
 ordering assume that g1 v g2 and g2 v g1and we shall then prove that g1 = g2. Assume that g1 s = s 0. Then g2 s = s 0follows from g1 v g2 so g1 and g2 are equal on s. If g1 s = undef then it must bethe
ase that g2 s = undef sin
e otherwise g2 s = s 0 and the assumption g2 v g1then gives g1 s = s 0 whi
h is a
ontradi
tion. Thus g1 and g2 will be equal on s.

4.2 Fixed point theory 97Finally, we shall prove that ? is the least element of State ,! State. It iseasy to see that ? is indeed an element of State ,! State and it is also obviousthat ? v g holds for all g sin
e ? s = s 0 va
uously implies that g s = s 0. 2Having introdu
ed an ordering on the partial fun
tions we
an now give a morepre
ise statement of the requirements to FIX F :� FIX F is a �xed point of F , that is F (FIX F) = FIX F , and� FIX F is a least �xed point of F , that isif F g = g then FIX F v g .Exer
ise 4.14 By analogy with Fa
t 4.9 show that if F has a least �xed point g0then g0 is unique. 2The next task will be to ensure that all fun
tionals F that may arise do indeedhave least �xed points. We shall do so by developing a general theory that givesmore stru
ture to the partially ordered sets and that imposes restri
tions on thefun
tionals so that they have least �xed points.Exer
ise 4.15 Determine the least �xed points of the fun
tionals
onsidered inExer
ises 4.2 and 4.3. Compare with Exer
ises 4.4 and 4.5. 2Complete partially ordered setsConsider a partially ordered set (D , v) and assume that we have a subset Y ofD . We shall be interested in an element of D that summarizes all the informationof Y and this is
alled an upper bound of Y ; formally, it is an element d of D su
hthat 8d 0 2 Y . d 0 v dAn upper bound d of Y is a least upper bound if and only ifd 0 is an upper bound of Y implies that d v d 0Thus a least upper bound of Y will add as little extra information as possible tothat already present in the elements of Y .Exer
ise 4.16 By analogy with Fa
t 4.9 show that if Y has a least upper boundd then d is unique. 2If Y has a (ne
essarily unique) least upper bound we shall denote it by FY .Finally, a subset Y is
alled a
hain if it is
onsistent in the sense that if we takeany two elements of Y then one will share its information with the other; formally,this is expressed by

98 4 Denotational Semanti
s8d1, d2 2 Y . d1 v d2 or d2 v d1Example 4.17 Consider the partially ordered set (P(fa,b,
g), �) of Example4.10. Then the subsetY 0 = f ;, fag, fa,
g gis a
hain. Both fa,b,
g and fa,
g are upper bounds of Y 0 and fa,
g is the leastupper bound. The element fa,bg is not an upper bound be
ause fa,
g 6� fa,bg.In general, the least upper bound of a non-empty
hain in P(fa,b,
g) will be thelargest element of the
hain.The subset f ;, fag, f
g, fa,
g g is not a
hain be
ause fag and f
g areunrelated by the ordering. However, it does have a least upper bound, namelyfa,
g.The subset ; of P(fa,b,
g) is a
hain and it has any element of P(fa,b,
g) asan upper bound. Its least upper bound is the element ;. 2Exer
ise 4.18 Let S be a non-empty set and
onsider the partially ordered set(P(S), �). Show that every subset of P(S) has a least upper bound. Repeat theexer
ise for the partially ordered set (P(S), �). 2Exer
ise 4.19 Let S be a non-empty set and
onsider the partially ordered set(P�n(S), �) as de�ned in Exer
ise 4.12. Show by means of an example that thereare
hoi
es of S su
h that (P�n(S), �) has a
hain with no upper bound andtherefore no least upper bound. 2Example 4.20 Let gn: State ,! State be de�ned bygn s = 8>>><>>>: undef if s x > ns[x7!�1℄ if 0 � s x and s x � ns if s x < 0It is straightforward to verify that gn v gm whenever n � m be
ause gn will beunde�ned for more states than gm. Now de�ne Y 0 to beY 0 = f gn j n � 0 gThen Y 0 is a
hain be
ause gn v gm whenever n � m. The partial fun
tiong s = 8<: s[x7!�1℄ if 0 � s xs if s x < 0is the least upper bound of Y . 2

4.2 Fixed point theory 99Exer
ise 4.21 Constru
t a subset Y of State ,! State su
h that Y has noupper bound and hen
e no least upper bound. 2Exer
ise 4.22 Let gn be the partial fun
tion de�ned bygn s = 8<: s[y7!(s x)!℄[x7!1℄ if 0 < s x and s x � nundef if s x � 0 or s x > n(where m! denotes the fa
torial of m.) De�ne Y 0 = f gn j n � 0 g and show thatit is a
hain. Chara
terize the upper bounds of Y 0 and determine the least upperbound. 2A partially ordered set (D , v) is
alled a
hain
omplete partially ordered set(abbreviated

po) whenever FY exists for all
hains Y . It is a
omplete latti
eif FY exists for all subsets Y of D .Example 4.23 Exer
ise 4.18 shows that (P(S), �) and (P(S), �) are
ompletelatti
es, and hen
e

po's, for all non-empty sets S . Exer
ise 4.19 shows that(P�n(S), �) need not be a
omplete latti
e nor a

po. 2Fa
t 4.24 If (D , v) is a

po then it has a least element ? given by ?= F;.Proof: It is straightforward to
he
k that ; is a
hain and sin
e (D , v) is a

powe get that F; exists. Using the de�nition of F; we see that for any element d ofD we have F; v d . This means that F; is the least element of D . 2Exer
ise 4.21 shows that State ,! State is not a
omplete latti
e. Fortunately,we haveLemma 4.25 (State ,! State, v) is a

po. The least upper bound FY of a
hain Y is given bygraph(FY) = Sf graph(g) j g 2Y gthat is (FY)s = s 0 if and only if g s = s 0 for some g 2 Y .Proof: The proof is in three stages: First we prove thatSf graph(g) j g 2 Y g (*)is indeed a graph of a partial fun
tion in State ,! State. Se
ondly, we provethat this fun
tion will be an upper bound of Y and thirdly that it is less than anyother upper bound of Y , that is it is the least upper bound of Y .To verify that (*) spe
i�es a partial fun
tion we only need to show that if hs, s 0iand hs, s 00i are elements of

100 4 Denotational Semanti
sX = Sf graph(g) j g2Y gthen s 0 = s 00. When hs, s 0i 2 X there will be a partial fun
tion g 2 Y su
h thatg s = s 0. Similarly, when hs, s 00i 2 X then there will be a partial fun
tion g 0 2 Ysu
h that g 0 s = s 00. Sin
e Y is a
hain we will have that either g v g 0 or g 0 v g .In any
ase we get g s = g 0 s and this means that s 0 = s 00 as required. This
ompletes the �rst part of the proof.In the se
ond part of the proof we de�ne the partial fun
tion g0 bygraph(g0) = Sf graph(g) j g 2 Y gTo show that g0 is an upper bound of Y let g be an element of Y . Then we havegraph(g) � graph(g0) and using the result of Exer
ise 4.8 we see that g v g0 asrequired and we have
ompleted the se
ond part of the proof.In the third part of the proof we show that g0 is the least upper bound of Y . Solet g1 be some upper bound of Y . Using the de�nition of an upper bound we getthat g v g1 must hold for all g 2Y . Exer
ise 4.8 gives that graph(g) � graph(g1).Hen
e it must be the
ase thatSf graph(g) j g 2 Y g � graph(g1)But this is the same as graph(g0) � graph(g1) and Exer
ise 4.8 gives that g0 v g1.This shows that g0 is the least upper bound of Y and thereby we have
ompletedthe proof. 2Continuous fun
tionsLet (D , v) and (D 0, v0) be

po's and
onsider a (total) fun
tion f : D ! D 0. Ifd1 v d2 then the intuition is that d1 shares its information with d2. So when thefun
tion f has been applied to the two elements d1 and d2 then we shall expe
tthat a similar relationship holds between the results. That is we shall expe
t thatf d1 v0 f d2 and when this is the
ase we say that f is monotone. Formally, f ismonotone if and only ifd1 v d2 implies f d1 v0 f d2for all
hoi
es of d1 and d2.Example 4.26 Consider the

po's (P(fa,b,
g), �) and (P(fd,eg), �). The fun
-tion f 1: P(fa,b,
g) ! P(fd,eg) de�ned by the tableX fa,b,
g fa,bg fa,
g fb,
g fag fbg f
g ;f 1 X fd,eg fdg fd,eg fd,eg fdg fdg feg ;

4.2 Fixed point theory 101is monotone: it simply
hanges a's and b's to d's and
's to e's.The fun
tion f 2: P(fa,b,
g) ! P(fd,eg) de�ned by the tableX fa,b,
g fa,bg fa,
g fb,
g fag fbg f
g ;f 2 X fdg fdg fdg feg fdg feg feg fegis not monotone be
ause fb,
g � fa,b,
g but f 2 fb,
g 6� f 2 fa,b,
g. Intuitively,all sets that
ontain an a are mapped to fdg whereas the others are mapped tofeg and sin
e the elements fdg and feg are in
omparable this does not give amonotone fun
tion. However, if we
hange the de�nition su
h that sets with an aare mapped to fdg and all other sets to ; then the fun
tion will be monotone. 2Exer
ise 4.27 Consider the

po (P(N), �). Determine whi
h of the followingfun
tions in P(N) ! P(N) are monotone:� f 1 X = N n X� f 2 X = X [f27g� f 3 X = X \ f7, 9, 13g� f 4 X = f n 2 X j n is a prime g� f 5 X = f 2 ? n j n 2 X g 2Exer
ise 4.28 Determine whi
h of the following fun
tionals of(State ,! State) ! (State ,! State)are monotone:� F 0 g = g� F 1 g = 8<: g1 if g = g2g2 otherwise where g1 6= g2� (F 0 g) s = 8<: g s if s x 6= 0s if s x = 0 2The monotone fun
tions have a
ouple of interesting properties. First we provethat the
omposition of two monotone fun
tions is a monotone fun
tion.

102 4 Denotational Semanti
s
Fa
t 4.29 Let (D , v), (D 0, v0) and (D 00, v00) be

po's and let f : D ! D 0and f 0: D 0 ! D 00 be monotone fun
tions. Then f 0 Æ f : D ! D 00 is a monotonefun
tion.Proof: Assume that d1 v d2. The monotoni
ity of f gives that f d1 v0 f d2. Themonotoni
ity of f 0 then gives f 0 (f d1) v00 f 0 (f d2) as required. 2Next we prove that the image of a
hain under a monotone fun
tion is itself a
hain.Lemma 4.30 Let (D ,v) and (D 0, v0) be

po's and let f : D ! D 0 be a monotonefun
tion. If Y is a
hain in D then f f d j d 2 Y g is a
hain in D 0. Furthermore,F0f f d j d 2 Y g v0 f (FY)Proof: If Y = ; then the result holds immediately sin
e ?0 v0 f ?. So assumethat Y 6= ;. We shall �rst prove that f f d j d 2 Y g is a
hain in D 0. So let d 01and d 02 be two elements of f f d j d 2 Y g. Then there are elements d1 and d2in Y su
h that d 01 = f d1 and d 02 = f d2. Sin
e Y is a
hain we have that eitherd1 v d2 or d2 v d1. In either
ase we get that the same order holds between d 01and d 02 be
ause of the monotoni
ity of f . This proves that f f d j d 2 Y g is a
hain.To prove the se
ond part of the lemma
onsider an arbitrary element d ofY . Then it will be the
ase that d v FY . The monotoni
ity of f gives thatf d v0 f (FY). Sin
e this holds for all d 2 Y we get that f (FY) is an upperbound on f f d j d 2Y g, that is F0 f f d j d 2Y g v0 f (FY). 2In general we
annot expe
t that a monotone fun
tion preserves least upperbounds on
hains, that is F0 f f d j d 2Y g = f (FY). This is illustrated by thefollowing example:Example 4.31 From Example 4.23 we get that (P(N [fag), �) is a

po. Now
onsider the fun
tion f : P(N [fag) ! P(N [fag) de�ned byf X = 8<: X if X is �niteX [fag if X is in�niteClearly, f is a monotone fun
tion: if X 1 � X 2 then also f X 1 � f X 2. However,f does not preserve the least upper bounds of
hains. To see this
onsider the setY = f f0,1,� � �,ng j n�0 g

4.2 Fixed point theory 103It
onsists of the elements f0g, f0,1g, f0,1,2g, � � � and it is straightforward to verifythat it is a
hain with N as its least upper bound, that is FY = N. When weapply f to the elements of Y we getF f f X j X 2 Y g = FY = NHowever, we also havef (FY) = f N = N [fagshowing that f does not preserve the least upper bounds of
hains. 2We shall be interested in fun
tions that preserve least upper bounds of
hains,that is fun
tions f that satisfyF0f f d j d 2Y g = f (FY)Intuitively, this means that we obtain the same information independently ofwhether we determine the least upper bound before or after applying the fun
-tion f .We shall say that a fun
tion f : D ! D 0 de�ned on

po's (D , v) and (D 0, v0)is
ontinuous if it is monotone andF0f f d j d 2Y g = f (FY)holds for all non-empty
hains Y . If Ff f d j d 2 Y g = f (FY) holds for theempty
hain, that is ? = f ?, then we shall say that f is stri
t.Example 4.32 The fun
tion f 1 of Example 4.26 is also
ontinuous. To see this
onsider a non-empty
hain Y of P(fa,b,
g). The least upper bound of Y will bethe largest element, say X 0, of Y (see Example 4.17). Therefore we havef 1 (FY) = f 1 X 0 be
ause X 0 = FY� Ff f 1 X j X 2 Y g be
ause X 0 2 YUsing that f 1 is monotone we get from Lemma 4.30 that Ff f 1 X j X 2 Y g� f 1 (FY). It follows that f 1 is
ontinuous. Also, f 1 is a stri
t fun
tion be
ausef 1 ; = ;.The fun
tion f of Example 4.31 is not a
ontinuous fun
tion be
ause there isa
hain for whi
h it does not preserve the least upper bound. 2Exer
ise 4.33 Show that the fun
tional F 0 of Example 4.1 is
ontinuous. 2Exer
ise 4.34 Assume that (D , v) and (D 0, v0) are

po's and that f : D ! D 0satis�es

104 4 Denotational Semanti
sF0f f d j d 2Y g = f (FY)for all non-empty
hains Y of D . Show that f is monotone. 2We
an extend the result of Lemma 4.29 to show that the
omposition of two
ontinuous fun
tions will also be
ontinuous:Lemma 4.35 Let (D , v), (D 0, v0) and (D 00, v00) be

po's and let f : D ! D 0and f 0: D 0 ! D 00 be
ontinuous fun
tions. Then f 0 Æ f : D ! D 00 is a
ontinuousfun
tion.Proof: From Lemma 4.29 we get that f 0 Æ f is monotone. To prove that it is
ontinuous let Y be a non-empty
hain in D . The
ontinuity of f givesF0f f d j d 2 Y g = f (FY)Sin
e f f d j d 2 Y g is a (non-empty)
hain in D 0 we
an use the
ontinuity off 0 and getF00f f 0 d 0 j d 0 2 f f d j d 2 Y g g = f 0 (F0f f d j d 2 Y g)whi
h is equivalent toF00f f 0 (f d) j d 2 Y g = f 0 (f (FY))This proves the result. 2Exer
ise 4.36 Prove that if f and f 0 are stri
t fun
tions then so is f 0 Æ f . 2We
an now de�ne the required �xed point operator FIX:Theorem 4.37 Let f : D ! D be a
ontinuous fun
tion on the

po (D , v) withleast element ?. ThenFIX f = Ff f n ? j n�0 gde�nes an element of D and this element is the least �xed point of f .Here we have used thatf 0 = id, andf n+1 = f Æ f n for n�0

4.2 Fixed point theory 105Proof: We �rst show the well-de�nedness of FIX f . Note that f 0 ? = ? and that? v d for all d 2 D . By indu
tion on n one may show thatf n ? v f n dfor all d 2 D sin
e f is monotone. It follows that f n ? v f m ? whenever n�m.Hen
e f f n ? j n�0 g is a (non-empty)
hain in D and FIX f exists be
ause D isa

po.We next show that FIX f is a �xed point, that is f (FIX f) = FIX f . We
al
ulate:f (FIX f) = f (Ff f n ? j n�0 g) (de�nition of FIX f)= Ff f (f n ?) j n�0 g (
ontinuity of f)= Ff f n ? j n�1 g= F(f f n ? j n�1 g [f?g) (F(Y [f?g) = FYfor all
hains Y)= Ff f n ? j n�0 g (f 0 ? = ?)= FIX f (de�nition of FIX f)To see that FIX f is the least �xed point assume that d is some other �xedpoint. Clearly ? v d so the monotoni
ity of f gives f n ? v f n d for n�0 and as dwas a �xed point we obtain f n ? v d for all n�0. Hen
e d is an upper bound ofthe
hain f f n ? j n�0 g and using that FIX f is the least upper bound we haveFIX f v d . 2Example 4.38 Consider the fun
tion F 0 of Example 4.1:(F 0 g) s = 8<: g s if s x 6= 0s if s x = 0We shall determine its least �xed point using the approa
h of Theorem 4.37. Theleast element ? of State ,! State is given by Lemma 4.13 and has ? s = undeffor all s. We then determine the elements of the set f F 0n ? j n�0 g as follows:(F 00 ?) s = (id ?) s (de�nition of F 00 ?)= undef (de�nition of id and ?)(F 01 ?) s = (F 0 ?) s (de�nition of F 01 ?)= 8<: ? s if s x 6= 0s if s x = 0 (de�nition of F 0 ?)= 8<: undef if s x 6= 0s if s x = 0 (de�nition of ?)

106 4 Denotational Semanti
s(F 02 ?) s = F 0 (F 01 ?) s (de�nition of F 02 ?)= 8<: (F 01 ?) s if s x 6= 0s if s x = 0 (de�nition of F 0)= 8<: undef if s x 6= 0s if s x = 0 (de�nition of F 01 ?)...In general we have F 0n ? = F 0n+1 ? for n > 0. ThereforeFf F 0n ? j n�0 g = F fF 00 ?, F 01 ?g = F 01 ?be
ause F 00 ? = ?. Thus the least �xed point of F 0 will be the fun
tiong1 s = 8<: undef if s x 6= 0s if s x = 0 2Exer
ise 4.39 Redo Exer
ise 4.15 using the approa
h of Theorem 4.37, that isdedu
e the general form of the iterands, F n ?, for the fun
tional, F , of Exer
ises4.2 and 4.3. 2Exer
ise 4.40 (Essential) Let f : D ! D be a
ontinuous fun
tion on a

po(D , v) and let d2D satisfy f d v d . Show that FIX f v d . 2The table below summarizes the development we have performed in order todemonstrate the existen
e of least �xed points:Fixed Point Theory1: We restri
t ourselves to
hain
omplete partially ordered sets |

po's.2: We restri
t ourselves to
ontinuous fun
tions on

po's.3: We show that
ontinuous fun
tions on

po's always have least �xed points(Theorem 4.37).Exer
ise 4.41 * Let (D , v) be a

po and de�ne (D!D ,v0) by settingf 1 v0 f 2 if and only if f 1 d v f 2 d for all d 2 DShow that (D!D ,v0) is a

po and that FIX is \
ontinuous" in the sense thatFIX (F0 F) = Ff FIX f j f 2 F gholds for all non-empty
hains F � D!D of
ontinuous fun
tions. 2

4.3 Dire
t style semanti
s: existen
e 107Exer
ise 4.42 ** (For mathemati
ians) Given a

po (D , v) we de�ne an openset of D to be a subset Y of D satisfying(1) if d12Y and d1 v d2 then d22Y , and(2) if Y 0 is a non-empty
hain satisfying FY 0 2 Y then there exists an elementd of Y 0 whi
h also is an element of Y .The set of open sets of D is denoted OD. Show that this is indeed a topology onD , that is show that� ; and D are members of OD, and� the interse
tion of two open sets is an open set, and� the union of any
olle
tion of open sets is an open set.Let (D , v) and (D 0, v0) be

po's. A fun
tion f :D!D 0 is topologi
ally-
ontinuousif and only if the fun
tion f �1: P(D 0) ! P(D) de�ned byf �1(Y 0) = f d 2 D j f d 2 Y 0 gmaps open sets to open sets, that is spe
ializes to f �1: OD0 !OD. Show that f is a
ontinuous fun
tion between D and D 0 if and only if it is a topologi
ally-
ontinuousfun
tion between D and D 0. 24.3 Dire
t style semanti
s: existen
eWe have now obtained the mathemati
al foundations needed to prove that thesemanti

lauses of Table 4.1 do indeed de�ne a fun
tion. So
onsider on
e againthe
lauseSds[[while b do S ℄℄ = FIX Fwhere F g =
ond(B[[b℄℄, g Æ Sds[[S ℄℄, id)For this to make sense we must show that F is
ontinuous. To do so we �rstobserve thatF g = F 1 (F 2 g)whereF 1 g =
ond(B[[b℄℄, g , id)F 2 g = g Æ Sds[[S ℄℄

108 4 Denotational Semanti
sUsing Lemma 4.35 we then obtain the
ontinuity of F by showing that F 1 and F 2are
ontinuous. We shall �rst prove that F 1 is
ontinuous:Lemma 4.43 Let g0: State ,! State, p: State ! T and de�neF g =
ond(p, g , g0)Then F is
ontinuous.Proof: We shall �rst prove that F is monotone. So assume that g1 v g2 and weshall show that F g1 v F g2. It suÆ
es to
onsider an arbitrary state s and showthat (F g1) s = s 0 implies (F g2) s = s 0If p s = tt then (F g1) s = g1 s and from g1 v g2 we get that g1 s = s 0 impliesg2 s = s 0. Sin
e (F g2) s = g2 s we have proved the result. So
onsider the
asewhere p s = �. Then (F g1) s = g0 s and similarly (F g2) s = g0 s and the resultis immediate.To prove that F is
ontinuous let Y be a non-empty
hain in State ,! State.We must show thatF (FY) v Ff F g j g2Y gsin
e F (FY) w Ff F g j g2Y g follows from the monotoni
ity of F (see Lemma4.30). Thus we have to show thatgraph(F (FY)) � Sf graph(F g) j g2Y gusing the
hara
terization of least upper bounds of
hains in State ,! State givenin Lemma 4.25. So assume that (F (FY)) s = s 0 and let us determine g 2 Y su
hthat (F g) s = s 0. If p s = � we have F (FY) s = g0 s = s 0 and
learly, for everyelement g of the non-empty set Y we have (F g) s = g0 s = s 0. If p s = tt thenwe get (F (FY)) s = (FY) s = s 0 so hs, s 0i 2 graph(FY). Sin
egraph(FY) = Sf graph(g) j g2Y g(a

ording to Lemma 4.25) we therefore have g2Y su
h that g s = s 0 and it followsthat (F g) s = s 0. This proves the result. 2Exer
ise 4.44 (Essential) Prove that (in the setting of Lemma 4.43) F de�nedby F g =
ond(p, g0, g) is
ontinuous, that is `
ond' is
ontinuous in its se
ondand third arguments. 2

4.3 Dire
t style semanti
s: existen
e 109
Lemma 4.45 Let g0: State ,! State and de�neF g = g Æ g0Then F is
ontinuous.Proof: We shall �rst prove that F is monotone. If g1 v g2 then graph(g1) �graph(g2) a

ording to Exer
ise 4.8 so thatgraph(g0) � graph(g1) � graph(g0) � graph(g2)and this shows that F g1 v F g2. Next we shall prove that F is
ontinuous. If Yis a non-empty
hain thengraph(F (FY)) = graph((FY) Æ g0)= graph(g0) � graph(FY)= graph(g0) � Sfgraph(g) j g2Y g= Sfgraph(g0) � graph(g) j g2Y g= graph(FfF g j g2Y g)where we have used Lemma 4.25 twi
e. Thus F (FY) = FfF g j g2Yg. 2Exer
ise 4.46 (Essential) Prove that (in the setting of Lemma 4.45) F de�nedby F g = g0 Æ g is
ontinuous, that is Æ is
ontinuous in both arguments. 2We have now established the results needed to show that the equations of Table4.1 de�ne a fun
tion Sds:Proposition 4.47 The semanti
 equations of Table 4.1 de�ne a total fun
tionSds in Stm ! (State ,! State).Proof: The proof is by stru
tural indu
tion on the statement S .The
ase x := a: Clearly the fun
tion that maps a state s to the state s[x 7!A[[a℄℄s℄is well-de�ned.The
ase skip: Clearly the fun
tion id is well-de�ned.The
ase S 1;S 2: The indu
tion hypothesis gives that Sds[[S 1℄℄ and Sds[[S 2℄℄ arewell-de�ned and
learly their
omposition will be well-de�ned.The
ase if b then S 1 else S 2: The indu
tion hypothesis gives that Sds[[S 1℄℄

110 4 Denotational Semanti
sand Sds[[S 2℄℄ are well-de�ned fun
tions and
learly this property is preserved bythe fun
tion `
ond'.The
ase while b do S : The indu
tion hypothesis gives that Sds[[S ℄℄ is well-de�ned.The fun
tions F 1 and F 2 de�ned byF 1 g =
ond(B[[b℄℄, g , id)F 2 g = g Æ Sds[[S ℄℄are
ontinuous a

ording to Lemmas 4.43 and 4.45. Thus Lemma 4.35 gives thatF g = F 1 (F 2 g) is
ontinuous. From Theorem 4.37 we then have that FIX F iswell-de�ned and thereby that Sds[[while b do S ℄℄ is well-de�ned. This
ompletesthe proof. 2Example 4.48 Consider the denotational semanti
s of the fa
torial statement:Sds[[y := 1; while :(x=1) do (y:=y?x; x:=x�1)℄℄We shall be interested in applying this fun
tion to a state s0 where x has the value3. To do that we shall �rst apply the
lauses of Table 4.1 and we then get thatSds[[y := 1; while :(x=1) do (y:=y?x; x:=x�1)℄℄ s0= (FIX F) s0[y7!1℄whereF g s = 8<: g (Sds[[y:= y?x; x:=x�1℄℄ s) if B[[:(x=1)℄℄ s = tts if B[[:(x=1)℄℄ s = �or, equivalently,F g s = 8<: g (s[y7!(s y)?(s x)℄[x7!(s x)�1℄) if s x 6= 1s if s x = 1We
an now
al
ulate the various fun
tions F n ? used in the de�nition of FIX Fin Theorem 4.37:(F 0 ?) s = undef(F 1 ?) s = 8<: undef if s x 6= 1s if s x = 1(F 2 ?) s = 8>>><>>>: undef if s x 6= 1 and s x 6= 2s[y7!(s y)?2℄[x7!1℄ if s x = 2s if s x = 1

4.3 Dire
t style semanti
s: existen
e 111Thus if x is 1 or 2 then the F 2 ? will give the
orre
t value for y and for all othervalues of x the result is unde�ned. This is a general pattern: the nth iterand F n ?will determine the
orre
t value if it
an be
omputed with at most n unfoldingsof the while-loop (that is n evaluations of the boolean
ondition). The generalformula is(F n ?) s = 8<: undef if s x < 1 or s x > ns[y7!(s y)?j � � �?2?1℄[x7!1℄ if s x = j and 1�j and j�nWe then have(FIX F) s = 8<: undef if s x < 1s[y7!(s y)?n� � �?2?1℄[x7!1℄ if s x = n and n�1So in the state s0 where x has the value 3 we get that the value
omputed by thefa
torial statement is(FIX F) (s0[y7!1℄) y = 1 ? 3 ? 2 ? 1 = 6as expe
ted. 2Exer
ise 4.49 Consider the statementz:=0; while y�x do (z:=z+1; x:=x�y)and perform a development analogous to that of Example 4.48. 2Exer
ise 4.50 Show that Sds[[while true do skip℄℄ is the totally unde�ned fun
-tion ?. 2Exer
ise 4.51 Extend the language with the statement repeat S until b andgive the new (
ompositional)
lause for Sds. Validate the well-de�nedness of theextended version of Sds. 2Exer
ise 4.52 Extend the language with the statement for x := a1 to a2 do Sand give the new (
ompositional)
lause for Sds. Validate the well-de�nedness ofthe extended version of Sds. 2To summarize, the well-de�nedness of Sds relies on the following results estab-lished above:

112 4 Denotational Semanti
sProof Summary for While:Well-de�nedness of Denotational Semanti
s1: The set State ,! State equipped with an appropriate order v is a

po(Lemmas 4.13 and 4.25).2: Certain fun
tions 	: (State ,! State) ! (State ,! State) are
ontin-uous (Lemmas 4.43 and 4.45).3: In the de�nition of Sds we only apply the �xed point operation to
ontin-uous fun
tions (Proposition 4.47).Properties of the semanti
sIn the operational semanti
s we de�ned a notion of two statements being seman-ti
ally equivalent. A similar notion
an be de�ned based on the denotationalsemanti
s: S 1 and S 2 are semanti
ally equivalent if and only ifSds[[S 1℄℄ = Sds[[S 2℄℄Exer
ise 4.53 Show that the following statements of While are semanti
allyequivalent in the above sense:� S ;skip and S� S 1;(S 2;S 3) and (S 1;S 2);S 3� while b do S and if b then (S ; while b do S) else skip 2Exer
ise 4.54 * Prove that repeat S until b and S ; while :b do S are seman-ti
ally equivalent using the denotational approa
h. The semanti
s of the repeat-
onstru
t is given in Exer
ise 4.51. 24.4 An equivalen
e resultHaving produ
ed yet another semanti
s of the language While we shall be inter-ested in its relation to the operational semanti
s and for this we shall fo
us on thestru
tural operational semanti
s.Theorem 4.55 For every statement S of While we have Ssos[[S ℄℄ = Sds[[S ℄℄.

4.4 An equivalen
e result 113Both Sds[[S ℄℄ and Ssos[[S ℄℄ are fun
tions in State ,! State, that is they are elementsof a partially ordered set. To prove that two elements d1 and d2 of a partiallyordered set are equal it is suÆ
ient to prove that d1 v d2 and that d2 v d1. Thusto prove Theorem 4.55 we shall show that� Ssos[[S ℄℄ v Sds[[S ℄℄, and� Sds[[S ℄℄ v Ssos[[S ℄℄.The �rst result is expressed by the following lemma:Lemma 4.56 For every statement S of While we have Ssos[[S ℄℄ v Sds[[S ℄℄.Proof: It is suÆ
ient to prove that for all states s and s 0hS , si)� s 0 implies Sds[[S ℄℄s = s 0 (*)To do so we shall need to establish the following propertyhS , si) s 0 implies Sds[[S ℄℄s = s 0hS , si) hS 0, s 0i implies Sds[[S ℄℄s = Sds[[S 0℄℄s 0 (**)Assuming that (**) holds the proof of (*) is a straightforward indu
tion on thelength k of the derivation sequen
e hS , si)k s 0 (see Se
tion 2.2).We now turn to the proof of (**) and for this we shall use indu
tion on theshape of the derivation tree for hS , si) s 0 or hS , si) hS 0, s 0i.The
ase [asssos℄: We havehx := a, si) s[x 7!A[[a℄℄s℄and sin
e Sds[[x := a℄℄s = s[x 7!A[[a℄℄s℄ the result follows.The
ase [skipsos℄: Analogous.The
ase [
omp 1sos℄: Assume thathS 1;S 2, si) hS 01;S 2, s 0ibe
ause hS 1, si) hS 01, s 0i. Then the indu
tion hypothesis applied to the lattertransition gives Sds[[S 1℄℄s = Sds[[S 01℄℄s 0 and we getSds[[S 1;S 2℄℄ s = Sds[[S 2℄℄(Sds[[S 1℄℄s)= Sds[[S 2℄℄(Sds[[S 01℄℄s 0)= Sds[[S 01;S 2℄℄s 0as required.The
ase [
omp 2sos℄: Assume that

114 4 Denotational Semanti
shS 1;S 2, si) hS 2, s 0ibe
ause hS 1, si) s 0. Then the indu
tion hypothesis applied to that transitiongives Sds[[S 1℄℄s = s 0 and we getSds[[S 1;S 2℄℄s = Sds[[S 2℄℄(Sds[[S 1℄℄s) = Sds[[S 2℄℄s 0where the �rst equality
omes from the de�nition of Sds and we just argued forthe se
ond equality. This proves the result.The
ase [if ttsos℄: Assume thathif b then S 1 else S 2, si) hS 1, sibe
ause B[[b℄℄ s = tt. ThenSds[[if b then S 1 else S 2℄℄s =
ond(B[[b℄℄, Sds[[S 1℄℄, Sds[[S 2℄℄)s = Sds[[S 1℄℄sas required.The
ase [if�sos℄: Analogous.The
ase [whilesos℄: Assume thathwhile b do S , si) hif b then (S ; while b do S) else skip, siFrom the de�nition of Sds we have Sds[[while b do S ℄℄ = FIX F where F g =
ond(B[[b℄℄, g Æ Sds[[S ℄℄, id). We therefore getSds[[while b do S ℄℄= (FIX F)= F (FIX F)=
ond(B[[b℄℄, Sds[[while b do S ℄℄ Æ Sds[[S ℄℄, id)=
ond(B[[b℄℄, Sds[[S ; while b do S ℄℄, Sds[[skip℄℄)= Sds[[if b then (S ; while b do S) else skip℄℄as required. This
ompletes the proof of (**). 2Note that (*) does not imply that Ssos[[S ℄℄ = Sds[[S ℄℄ as we have only provedthat if Ssos[[S ℄℄s 6= undef then Ssos[[S ℄℄s = Sds[[S ℄℄s. Still there is the possibility thatSds[[S ℄℄ may be de�ned for more arguments than Ssos[[S ℄℄. However this is ruled outby the following lemma:Lemma 4.57 For every statement S of While we have Sds[[S ℄℄ v Ssos[[S ℄℄.

4.4 An equivalen
e result 115Proof: We pro
eed by stru
tural indu
tion on the statement S .The
ase x := a: Clearly Sds[[x := a℄℄s = Ssos[[x := a℄℄s. Note that this meansthat Ssos satis�es the
lause de�ning Sds in Table 4.1.The
ase skip: Clearly Sds[[skip℄℄s = Ssos[[skip℄℄s.The
ase S 1 ; S 2: Re
all that Æ is monotone in both arguments (Lemma 4.45 andExer
ise 4.46). We then haveSds[[S 1 ; S 2℄℄ = Sds[[S 2℄℄ Æ Sds[[S 1℄℄v Ssos[[S 2℄℄ Æ Ssos[[S 1℄℄be
ause the indu
tion hypothesis applied to S 1 and S 2 gives Sds[[S 1℄℄ v Ssos[[S 1℄℄and Sds[[S 2℄℄ v Ssos[[S 2℄℄. Furthermore, Exer
ise 2.21 gives that if hS 1, si)� s 0then hS 1 ; S 2, si)� hS 2, s 0i and hen
eSsos[[S 2℄℄ Æ Ssos[[S 1℄℄ v Ssos[[S 1 ; S 2℄℄and this proves the result. Note that in this
ase Ssos ful�ls a weaker version ofthe
lause de�ning Sds in Table 4.1.The
ase if b then S 1 else S 2: Re
all that `
ond' is monotone in its se
ond andthird argument (Lemma 4.43 and Exer
ise 4.44). We then haveSds[[if b then S 1 else S 2℄℄ =
ond(B[[b℄℄, Sds[[S 1℄℄, Sds[[S 2℄℄)v
ond(B[[b℄℄, Ssos[[S 1℄℄, Ssos[[S 2℄℄)be
ause the indu
tion hypothesis applied to S 1 and S 2 gives Sds[[S 1℄℄ v Ssos[[S 1℄℄and Sds[[S 2℄℄ v Ssos[[S 2℄℄. Furthermore, it follows from [if ttsos℄ and [if�sos℄ thatSsos[[if b then S 1 else S 2℄℄s = Ssos[[S 1℄℄s if B[[b℄℄s = ttSsos[[if b then S 1 else S 2℄℄s = Ssos[[S 2℄℄s if B[[b℄℄s = �so that
ond(B[[b℄℄, Ssos[[S 1℄℄, Ssos[[S 2℄℄) = Ssos[[if b then S 1 else S 2℄℄and this proves the result. Note that in this
ase Ssos ful�ls the
lause de�ningSds in Table 4.1.The
ase while b do S : We haveSds[[while b do S ℄℄ = FIX Fwhere F g =
ond(B[[b℄℄, g Æ Sds[[S ℄℄, id) and we re
all that F is
ontinuous. It issuÆ
ient to prove thatF (S sos[[while b do S ℄℄) v S sos[[while b do S ℄℄

116 4 Denotational Semanti
sbe
ause then Exer
ise 4.40 gives FIX F v S sos[[while b do S ℄℄ as required. FromExer
ise 2.21 we getSsos[[while b do S ℄℄ =
ond(B[[b℄℄, Ssos[[S ; while b do S ℄℄, id)w
ond(B[[b℄℄, Ssos[[while b do S ℄℄ Æ Ssos[[S ℄℄, id)The indu
tion hypothesis applied to S gives Sds[[S ℄℄ v Ssos[[S ℄℄ so using the mono-toni
ity of Æ and `
ond' we getSsos[[while b do S ℄℄ w
ond(B[[b℄℄, Ssos[[while b do S ℄℄ Æ Ssos[[S ℄℄, id)w
ond(B[[b℄℄, Ssos[[while b do S ℄℄ Æ Sds[[S ℄℄, id)= F (Ssos[[while b do S ℄℄)Note that in this
ase Ssos also ful�ls a weaker version of the
lause de�ning Sdsin Table 4.1. 2The key te
hnique used in the proof
an be summarized as follows:Proof Summary for While:Equivalen
e of Operational Semanti
s and Denotational Semanti
s1: Prove that Ssos[[S ℄℄v Sds[[S ℄℄ by �rst using indu
tion on the shape of deriva-tion trees to show that� if a statement is exe
uted one step in the stru
tural operationalsemanti
s and does not terminate then this does not
hange themeaning in the denotational semanti
s, and� if a statement is exe
uted one step in the stru
tural operationalsemanti
s and does terminate, then the same result is obtained inthe denotational semanti
s.and se
ondly by using indu
tion on the length of derivation sequen
es.2: Prove that Sds[[S ℄℄ v Ssos[[S ℄℄ by showing that� Ssos ful�ls slightly weaker versions of the
lauses de�ning Sds in Table4.1, that is ifSds[[S ℄℄ = 	(� � � Sds[[S 0℄℄ � � �)then Ssos[[S ℄℄ w 	(� � � Ssos[[S 0℄℄ � � �)A proof by stru
tural indu
tion then gives that Sds[[S ℄℄ v Ssos[[S ℄℄.

4.5 Extensions of While 117Exer
ise 4.58 Give a detailed argument showing thatSsos[[while b do S ℄℄ w
ond(B[[b℄℄, Ssos[[while b do S ℄℄ Æ Ssos[[S ℄℄, id). 2Exer
ise 4.59 Extend the proof of Theorem 4.55 so that it applies to the languagewhen augmented with repeat S until b. 2Exer
ise 4.60 Extend the proof of Theorem 4.55 so that it applies to the languagewhen augmented with for x :=a1 to a2 do S . 2Exer
ise 4.61 Combining the results of Theorem 2.26 and Theorem 4.55 we getthat Sns[[S ℄℄ = Sds[[S ℄℄ holds for every statement S of While. Give a dire
t proofof this (that is without using the two theorems). 24.5 Extensions of WhileWe shall
on
lude this
hapter by
onsidering a
ouple of extensions of the languageWhile. The extensions have been
hosen so as to illustrate two of the mostimportant
on
epts of denotational semanti
s:� lo
ations, and�
ontinuations.In the �rst
ase While is extended with blo
ks and pro
edures and in the se
ond
ase with ex
eptions. In both
ases we shall show how to modify the semanti
s ofTable 4.1.The
on
ept of lo
ationsWe shall �rst extend While with blo
ks de
laring lo
al variables and pro
edures.The new language is
alled Pro
 and its syntax isS ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do S j begin DV DP S end j
all pDV ::= var x := a; DV j "DP ::= pro
 p is S ; DP j "where DV and DP are meta-variables ranging over the synta
ti

ategories De
Vof variable de
larations and De
P of pro
edure de
larations, respe
tively, and p isa meta-variable ranging over the synta
ti

ategory Pname of pro
edure names.The idea is that variables and pro
edures are only known inside the blo
k wherethey are de
lared. Pro
edures may or may not be re
ursive and we shall emphasizethe di�eren
es in the semanti
s to be spe
i�ed below.We shall adopt stati
 s
ope rules rather than dynami
 s
ope rules. Considerthe following statement:

118 4 Denotational Semanti
sbegin var x := 7; pro
 p is x := 0;begin var x := 5;
all p endendUsing stati
 s
ope rules the e�e
t of exe
uting
all p in the inner blo
k will beto modify the global variable x. Using dynami
 s
ope rules the e�e
t will be tomodify the lo
al variable x.To obtain stati
 s
ope rules we shall introdu
e the notion of lo
ations: toea
h variable we asso
iate a unique lo
ation and to ea
h lo
ation we asso
iate avalue. This is in
ontrast to what we did in Table 4.1 where we employed a dire
tasso
iation between variables and values. The idea then is that whenever a newvariable is de
lared it is asso
iated with a new unused lo
ation and that it is thevalue of this lo
ation that is
hanged by assignment to the variable. With respe
tto the above statement this means that the global variable x and the lo
al variablex will have di�erent lo
ations. In the inner blo
k we
an only dire
tly a

ess thelo
ation of the lo
al variable but the pro
edure body for p may only a

ess thelo
ation of the global variable.Stores and variable environmentsSo far states in State have been used to asso
iate values with variables. We shallnow repla
e states with stores that map lo
ations to values and with variableenvironments that map variables to lo
ations. We introdu
e the domainLo
 = Zof lo
ations whi
h for the sake of simpli
ity has been identi�ed with the integers.We shall need an operationnew: Lo
 ! Lo
on lo
ations that given a lo
ation will give the next one; sin
e Lo
 is Z we maytake `new' to be the su

essor fun
tion on the integers.We
an now de�ne a store, sto, as an element ofStore = Lo
 [fnextg ! Zwhere `next' is a spe
ial token used to hold the next free lo
ation. Note that sin
eLo
 is Z we have that `sto next' is a lo
ation.A variable environment envV is an element ofEnvV = Var ! Lo
Thus the variable environment will assign a lo
ation to ea
h variable.So, rather than having a single mapping s from variables to values we havesplit it into two mappings envV and sto and the idea is that s = sto Æ envV . Thismotivates de�ning the fun
tion `lookup' by

4.5 Extensions of While 119S 0ds[[x :=a℄℄envV sto = sto[l 7!A[[a℄℄(lookup envV sto)℄where l = envV xS 0ds[[skip℄℄envV = idS 0ds[[S 1 ; S 2℄℄envV = (S 0ds[[S 2℄℄envV) Æ (S 0ds[[S 1℄℄envV)S 0ds[[if b then S 1 else S 2℄℄envV =
ond(B[[b℄℄Æ(lookup envV), S 0ds[[S 1℄℄envV , S 0ds[[S 2℄℄envV)S 0ds[[while b do S ℄℄envV = FIX Fwhere F g =
ond(B[[b℄℄Æ(lookup envV), g Æ (S 0ds[[S ℄℄envV), id)Table 4.2: Denotational semanti
s for While using lo
ationslookup envV sto = sto Æ envVso that `lookup envV ' will transform a store to a state, that islookup: EnvV ! Store ! StateHaving repla
ed a one stage mapping with a two stage mapping we shall wantto reformulate the semanti
 equations of Table 4.1 to use variable environmentsand stores. The new semanti
 fun
tion S 0ds has fun
tionalityS 0ds: Stm ! EnvV ! (Store ,! Store)so that only the store is updated during the exe
ution of statements. The
lausesde�ning S 0ds are given in Table 4.2. Note that in the
lause for assignment thevariable environment is
onsulted to determine the lo
ation of the variable andthis lo
ation is updated in the store. In the
lauses for the
onditional and thewhile-
onstru
t we use the auxiliary fun
tion `
ond' of fun
tionality
ond: (Store ! T) � (Store ,! Store) � (Store ,! Store)! (Store ,! Store)and its de�nition is as in Se
tion 4.1.Exer
ise 4.62 We have to make sure that the
lauses of Table 4.2 de�ne a well-de�ned fun
tion S 0ds. To do so� equip Store ,! Store with a partial ordering su
h that it be
omes a

po,� show that Æ is
ontinuous in both of its arguments and that `
ond' is
ontin-uous in its se
ond and third argument, and

120 4 Denotational Semanti
s� show that the �xed point operation is only applied to
ontinuous fun
tions.Con
lude that S 0ds is a well-de�ned fun
tion. 2Exer
ise 4.63 * Prove that the two semanti
 fun
tions Sds and S 0ds satisfySds[[S ℄℄ Æ (lookup envV) = (lookup envV) Æ (S 0ds[[S ℄℄envV)for all statements S of While and for all envV su
h that envV is an inje
tivemapping. 2Exer
ise 4.64 Having repla
ed a one stage mapping with a two stage mapping wemight
onsider rede�ning the semanti
 fun
tions A and B. The new fun
tionalitiesof A and B might beA0: Aexp ! EnvV ! (Store ! Z)B0: Bexp ! EnvV ! (Store ! T)and the intended relationship is thatA0[[a℄℄envV = A[[a℄℄ Æ (lookup envV)B0[[b℄℄envV = B[[b℄℄ Æ (lookup envV)Give a
ompositional de�nition of the fun
tions A0 and B0 su
h that this is the
ase. 2Updating the variable environmentThe variable environment is updated whenever we enter a blo
k
ontaining lo
alde
larations. To express this we shall introdu
e a semanti
 fun
tion DVds for thesynta
ti

ategory of variable de
larations. It has fun
tionalityDVds: De
V ! EnvV � Store ! EnvV � StoreThe fun
tion DVds[[DV ℄℄ will take a pair as arguments: the �rst
omponent of thatpair will be the
urrent variable environment and the se
ond
omponent the
urrentstore. The fun
tion will return the updated variable environment as well as theupdated store. The fun
tion is de�ned by the semanti

lauses of Table 4.3. Notethat we pro
ess the de
larations from left to right and that we update the valueof the token `next' in the store.In the
ase where there are no pro
edure de
larations in a blo
k we
an extendthe semanti
 fun
tion S 0ds of Table 4.2 with a
lause likeS 0ds[[begin DV S end℄℄envV sto = S 0ds[[S ℄℄env 0V sto 0where DVds[[DV ℄℄(envV , sto) = (env 0V , sto 0)

4.5 Extensions of While 121DVds[[var x := a; DV ℄℄(envV , sto) =DVds[[DV ℄℄(envV [x 7!l ℄, sto[l 7!v ℄[next7!new l ℄)where l = sto next and v = A[[a℄℄(lookup envV sto)DVds[["℄℄ = idTable 4.3: Denotational semanti
s for variable de
larationsThus we evaluate the body S in an updated variable environment and an updatedstore. We shall later modify the above
lause to take the pro
edure de
larationsinto a

ount.Exer
ise 4.65 Consider the following statement of Pro
:begin var y := 0; var x := 1;begin var x := 7; x := x+1 end;y := xendUse the semanti
 equations to show that the lo
ation for y is assigned the value 1in the �nal store. 2Pro
edure environmentsTo
ater for pro
edures we shall introdu
e the notion of a pro
edure environment.It will be a total fun
tion that will asso
iate ea
h pro
edure with the e�e
t ofexe
uting its body. This means that a pro
edure environment, envP , will be anelement ofEnvP = Pname ! (Store ,! Store)Remark This notion of pro
edure environment di�ers from that of the operationalapproa
h. 2The pro
edure environment is updated using the semanti
 fun
tion DPds forpro
edure de
larations. It has fun
tionalityDPds: De
P ! EnvV ! EnvP ! EnvPSo given the
urrent variable environment and the
urrent pro
edure environmentthe fun
tion DPds[[DP ℄℄ will update the pro
edure environment. The variable envi-ronment must be available be
ause pro
edures must know the variables that havebeen de
lared so far. An example is the statement

122 4 Denotational Semanti
sDPds[[pro
 p is S ; DP ℄℄envV envP = DPds[[DP ℄℄envV (envP [p 7!g ℄)where g = Sds[[S ℄℄envV envPDPds[["℄℄envV = idTable 4.4: Denotational semanti
s for non-re
ursive pro
edure de
larationsbegin var x := 7; pro
 p is x := 0;begin var x := 5;
all p endendwhere the body of p must know that a variable x has been de
lared in the outerblo
k.The semanti

lauses de�ning DPds in the
ase of non-re
ursive pro
edures aregiven in Table 4.4. In the
lause for pro
edure de
larations we use the semanti
fun
tion Sds for statements (de�ned below) to determine the meaning of the bodyof the pro
edure using that envV and envP are the environments at the point ofde
laration. The variables o

urring in the body S of p will therefore be bound tothe lo
ations of the variables as known at the time of de
laration but the valuesof the lo
ations will not be known until the time of
all. In this way we ensurethat we obtain stati
 s
ope for variables. Also an o

urren
e of
all p 0 in thebody of the pro
edure will refer to a pro
edure p 0 mentioned in envP , that is apro
edure de
lared in an outer blo
k or in the
urrent blo
k but pre
eding thepresent pro
edure. In this way we obtain stati
 s
ope for pro
edures. This will beillustrated in Exer
ise 4.67 below.The semanti
 fun
tion Sds for Pro
The meaning of a statement depends on the variables and pro
edures that havebeen de
lared. Therefore the semanti
 fun
tion Sds for statements in Pro
 willhave fun
tionalitySds: Stm ! EnvV ! EnvP ! (Store ,! Store)The fun
tion is de�ned by the
lauses of Table 4.5. In most
ases the de�nition ofSds is a straightforward modi�
ation of the
lauses of S 0ds. Note that the meaningof a pro
edure
all is obtained by simply
onsulting the pro
edure environment.Example 4.66 This example shows how we obtain stati
 s
ope rules for the vari-ables. Consider the appli
ation of the semanti
 fun
tion Sds to the statementbegin var x := 7; pro
 p is x := 0;begin var x := 5;
all p endend

4.5 Extensions of While 123Sds[[x :=a℄℄envV envP sto = sto[l 7!A[[a℄℄(lookup envV sto)℄where l = envV xSds[[skip℄℄envV envP = idSds[[S 1 ; S 2℄℄envV envP = (Sds[[S 2℄℄envV envP) Æ (Sds[[S 1℄℄envV envP)Sds[[if b then S 1 else S 2℄℄envV envP =
ond(B[[b℄℄Æ(lookup envV), Sds[[S 1℄℄envV envP ,Sds[[S 2℄℄envV envP)Sds[[while b do S ℄℄envV envP = FIX Fwhere F g =
ond(B[[b℄℄Æ(lookup envV),g Æ (Sds[[S ℄℄envV envP), id)Sds[[begin DV DP S end℄℄envV envP sto = Sds[[S ℄℄env 0V env 0P sto 0where DVds[[DV ℄℄(envV , sto) = (env 0V , sto 0)and DPds[[DP ℄℄env 0V envP = env 0PSds[[
all p℄℄envV envP = envP pTable 4.5: Denotational semanti
s for Pro
Assume that the initial environments are envV and envP and that the initialstore sto has sto next = 12. Then the �rst step will be to update the variableenvironment with the de
larations of the outer blo
k:DVds[[var x := 7;℄℄(envV , sto)= DVds[["℄℄(envV [x7!12℄, sto[127!7℄[next7!13℄)= (envV [x7!12℄, sto[127!7℄[next7!13℄)Next we update the pro
edure environment:DPds[[pro
 p is x := 0;℄℄(envV [x7!12℄) envP= DPds[["℄℄(envV [x7!12℄) (envP [p7!g ℄)= envP [p7!g ℄whereg sto = Sds[[x := 0℄℄(envV [x7!12℄) envP sto= sto[127!0℄

124 4 Denotational Semanti
sbe
ause x is to be found in lo
ation 12 a

ording to the variable environment.Then we getSds[[begin var x := 7; pro
 p is x := 0;begin var x := 5;
all p end end℄℄envV envP sto= Sds[[begin var x := 5;
all p end℄℄ (envV [x7!12℄) (envP [p7!g ℄)(sto[127!7℄[next7!13℄)For the variable de
larations of the inner blo
k we haveDVds[[var x := 5;℄℄(envV [x7!12℄, sto[127!7℄[next7!13℄)= DVds[["℄℄(envV [x7!13℄, sto[127!7℄[137!5℄[next7!14℄)= (envV [x7!13℄, sto[127!7℄[137!5℄[next7!14℄)and DPds[["℄℄(envV [x7!13℄) (envP [p7!g ℄) = envP [p7!g ℄Thus we getSds[[begin var x := 5;
all p end℄℄ (envV [x7!12℄) (envP [p7!g ℄)(sto[127!7℄[next7!13℄)= Sds[[
all p℄℄(envV [x7!13℄) (envP [p7!g ℄)(sto[127!7℄[137!5℄[next7!14℄)= g (sto[127!7℄[137!5℄[next7!14℄)= sto[127!0℄[137!5℄[next7!14℄so we see that in the �nal store the lo
ation for the lo
al variable has the value 5and the one for the global variable has the value 0. 2Exer
ise 4.67 Consider the following statement in Pro
:begin var x := 0;pro
 p is x := x+1;pro
 q is
all p;begin pro
 p is x := 7;
all qendendUse the semanti

lauses of Pro
 to illustrate that pro
edures have stati
 s
ope,that is show that the �nal store will asso
iate the lo
ation of x with the value 1(rather than 7). 2

4.5 Extensions of While 125DPds[[pro
 p is S ; DP ℄℄envV envP = DPds[[DP ℄℄envV (envP [p 7!FIX F ℄)where F g = Sds[[S ℄℄envV (envP [p 7!g ℄)DPds[["℄℄envV = idTable 4.6: Denotational semanti
s for re
ursive pro
edure de
larationsRe
ursive pro
eduresIn the
ase where pro
edures are allowed to be re
ursive we shall be interested ina fun
tion g in Store ,! Store satisfyingg = Sds[[S ℄℄envV (envP [p 7!g ℄)sin
e this will ensure that the meaning of all the re
ursive
alls is the same as thatof the pro
edure being de�ned. For this only the
lause for DPds[[pro
 p is S ; DP ℄℄needs to be modi�ed and the new
lause is given in Table 4.6. We shall see inExer
ise 4.69 that this is a permissible de�nition, that is F of Table 4.6 is indeed
ontinuous.Remark Let us brie
y
ompare the above semanti
s with the operational seman-ti
s given in Se
tion 2.5 for the same language. In the operational semanti
s thepossibility of re
ursion is handled by updating the environment ea
h time the pro-
edure is
alled and, ex
ept for re
ording the de
laration, no a
tion takes pla
ewhen the pro
edure is de
lared. In the denotational approa
h, the situation is verydi�erent. The possibility of re
ursion is handled on
e and for all, namely whenthe pro
edure is de
lared. 2Exer
ise 4.68 Consider the de
laration of the fa
torial pro
edurepro
 fa
 is begin var z := x;if x = 1 then skipelse (x := x � 1;
all fa
; y := z ? y)end;Assume that the initial environments are envV and envP and that envV x = lxand envV y = ly. Determine the updated pro
edure environment. 2As for While we must ensure that the semanti

lauses de�ne a total fun
tionSds. We leave the details to the exer
ise below.Exer
ise 4.69 ** To ensure that the
lauses for Sds de�ne a total fun
tion wemust show that FIX is only applied to
ontinuous fun
tions. In the
ase of re
ursivepro
edures this is a rather laborious task. First one may use stru
tural indu
tionto show that DVds is indeed a well-de�ned fun
tion. Se
ondly one may de�ne

126 4 Denotational Semanti
senvP v0 env 0P if and only if envP p v env 0P p for all p 2 Pnameand show that (EnvP, v0) is a

po. Finally, one may use Exer
ise 4.41 (with Dbeing Store ,! Store) to show that for all envV 2 EnvV the
lauses of Tables4.3, 4.5 and 4.6 do de�ne
ontinuous fun
tionsSds[[S ℄℄envV : EnvP ! (Store ,! Store)DPds[[DP ℄℄envV : EnvP ! EnvPThis is performed using mutual stru
tural indu
tion on statements S and de
la-rations DP. 2Exer
ise 4.70 Modify the syntax of pro
edures so that they take two
all-by-value parameters:DP ::= pro
 p(x 1,x 2) is S ; DP j "S ::= � � � j
all p(a1,a2)The meaning of a pro
edure will now depend upon the values of its parametersas well as the state in whi
h it is exe
uted. We therefore
hange the de�nition ofEnvP to beEnvP = Pname ! ((Z � Z) ! (Store ,! Store))so that given a pair of values and a store we
an determine the �nal store. Modifythe de�nition of Sds to use this pro
edure environment. Also provide semanti

lauses for DPds in the
ase of non-re
ursive as well as re
ursive pro
edures. Con-stru
t statements that illustrate how the new
lauses are used. 2Exer
ise 4.71 * Modify the semanti
s of Pro
 so that dynami
 s
ope rules areemployed for variables as well as pro
edures. 2The
on
ept of
ontinuationsAnother important
on
ept from denotational semanti
s is that of
ontinuations.To illustrate it we shall
onsider an extension of While where ex
eptions
an beraised and handled. The new language is
alled Ex
 and its syntax is:S ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do S j begin S 1 handle e: S 2 end j raise eThe meta-variable e ranges over the synta
ti

ategory Ex
eption of ex
eptions.The statement raise e is a kind of jump instru
tion: when it is en
ountered, theexe
ution of the en
apsulating blo
k is stopped and the
ow of
ontrol is given tothe statement de
laring the ex
eption e. An example is the statement

4.5 Extensions of While 127begin while true do if x�0then raise exitelse x := x�1handle exit: y := 7endAssume that s0 is the initial state and that s0 x > 0. Then the false bran
h of the
onditional will be
hosen and the value of x de
remented. Eventually, x gets thevalue 0 and the true bran
h of the
onditional will raise the ex
eption exit. Thiswill
ause the exe
ution of the while-loop to be terminated and
ontrol will betransferred to the handler for exit. Thus the statement will terminate in a statewhere x has the value 0 and y the value 7.The meaning of an ex
eption will be the e�e
t of exe
uting the remainder ofthe program starting from the handler. Consider a statement of the form(if b then S 1 else S 2) ; S 3In the language While it is evident that independently of whether we exe
uteS 1 or S 2 we have to
ontinue with S 3. When we introdu
e ex
eptions this doesnot hold any longer: if one of the bran
hes raises an ex
eption not handled insidethat bran
h, then we will
ertainly not exe
ute S 3. It is therefore ne
essary torewrite the semanti
s of While to make the \e�e
t of exe
uting the remainder ofthe program" more expli
it.Continuation style semanti
s for WhileIn a
ontinuation style semanti
s the
ontinuations des
ribe the e�e
t of exe
utingthe remainder of the program. For us a
ontinuation
 is an element of the domainCont = State ,! Stateand is thus a partial fun
tion from State to State. Sometimes one uses partialfun
tions from State to a \simpler" setAns of answers but in all
ases the purposeof a
ontinuation is to express the \out
ome" of the remainder of the program whenstarted in a given state.Consider a statement of the form � � �; S ; � � � and let us explain the meaning ofS in terms of the e�e
t of exe
uting the remainder of the program. The startingpoint will be the
ontinuation
 determining the e�e
t of exe
uting the part ofthe program after S , that is
 s is the state obtained when the remainder of theprogram is exe
uted from state s. We shall then determine the e�e
t of exe
utingS and the remainder of the program, that is we shall determine a
ontinuation
 0su
h that
 0 s is the state obtained when exe
uting S and the part of the programfollowing S from state s. Pi
torially, from

128 4 Denotational Semanti
sS 0
s[[x :=a℄℄
 s =
 (s[x 7!A[[a℄℄s℄)S 0
s[[skip℄℄ = idS 0
s[[S 1 ; S 2℄℄ = S 0
s[[S 1℄℄ Æ S 0
s[[S 2℄℄S 0
s[[if b then S 1 else S 2℄℄
 =
ond(B[[b℄℄, S 0
s[[S 1℄℄
, S 0
s[[S 2℄℄
)S 0
s[[while b do S ℄℄ = FIX Gwhere (G g)
 =
ond(B[[b℄℄, S 0
s[[S ℄℄(g
),
)Table 4.7: Continuation style semanti
s for While� � � ; S ; � � �| {z }
we want to obtain� � � ; S ; � � �| {z }
 0We shall de�ne a semanti
 fun
tion S 0
s for While that a
hieves this. It hasfun
tionalityS 0
s: Stm ! (Cont ! Cont)and is de�ned in Table 4.7. The
lauses for assignment and skip are straightfor-ward; however, note that we now use id as the identity fun
tion on Cont, that isid
 s =
 s. In the
lause for
omposition the order of the fun
tional
ompositionis reversed
ompared with the dire
t style semanti
s of Table 4.1. Intuitively, thereason is that the
ontinuations are \pulled ba
kwards" through the two state-ments. So assuming that
 is the
ontinuation for the remainder of the programwe shall �rst determine a
ontinuation for S 2 followed by the remainder of theprogram and next for S 1 followed by S 2 and the remainder of the program.The
lause for the
onditional is straightforward as the
ontinuation appliesto both bran
hes. In the
lause for the while-
onstru
t we use the �xed pointoperator as in the dire
t style semanti
s. If the test of while b do S evaluates to� then we return the
ontinuation
 for the remainder of the program. If the testevaluates to tt then g
 denotes the e�e
t of exe
uting the remainder of the loopfollowed by the remainder of the program and is the
ontinuation to be used forthe �rst unfolding of the loop.Example 4.72 Consider the statement z := x; x := y; y := z of Chapter 1. Letid be the identity fun
tion on State. Then we have

4.5 Extensions of While 129S 0
s[[z := x; x := y; y := z℄℄id= (S 0
s[[z := x℄℄ Æ S 0
s[[x := y℄℄ Æ S 0
s[[y := z℄℄) id= (S 0
s[[z := x℄℄ Æ S 0
s[[x := y℄℄) g1where g1 s = id(s[y7!(s z)℄)= S 0
s[[z := x℄℄g2where g2 s = g1(s[x7!(s y)℄)= id(s[x7!(s y)℄[y7!(s z)℄)= g3 where g3 s = g2(s[z7!(s x)℄)= id(s[z7!(s x)℄[x7!(s y)℄[y7!(s x)℄)Note that the semanti
 fun
tion is
onstru
ted in a \ba
kwards" manner. 2As in the
ase of the dire
t style semanti
s we must ensure that the semanti

lauses de�ne a total fun
tion S 0
s. We leave the details to the exer
ise below.Exer
ise 4.73 ** To ensure that the
lauses for S 0
s de�ne a total fun
tion wemust show that FIX is only applied to
ontinuous fun
tions. First one may de�neg1 v0 g2 if and only if g1
 v g2
 for all
 2 Contand show that (Cont ! Cont, v0) is a

po. Se
ondly, one may de�ne[Cont ! Cont℄ = f g : Cont ! Cont j g is
ontinuous gand show that ([Cont! Cont℄, v0) is a

po. Finally, one may use Exer
ise 4.41(with D = [Cont! Cont℄) to show that the
lauses of Table 4.7 de�ne a fun
tionS 0
s: [Cont ! Cont℄using stru
tural indu
tion on S . 2Exer
ise 4.74 * Prove that the two semanti
 fun
tions Sds and S 0
s satisfyS 0
s[[S ℄℄
 =
 Æ Sds[[S ℄℄for all statements S of While and for all
ontinuations
. 2Exer
ise 4.75 Extend the languageWhile with the
onstru
t repeat S until band give the new (
ompositional)
lause for S 0
s. 2

130 4 Denotational Semanti
sS
s[[x :=a℄℄envE
 s =
 (s[x 7!A[[a℄℄s℄)S
s[[skip℄℄envE = idS
s[[S 1 ; S 2℄℄envE = (S
s[[S 1℄℄envE) Æ (S
s[[S 2℄℄envE)S
s[[if b then S 1 else S 2℄℄envE
 =
ond(B[[b℄℄, S
s[[S 1℄℄envE
, S
s[[S 2℄℄envE
)S
s[[while b do S ℄℄envE = FIX Gwhere (G g)
 =
ond(B[[b℄℄, S
s[[S ℄℄envE (g
),
)S
s[[begin S 1 handle e: S 2 end℄℄envE
 =S
s[[S 1℄℄(envE[e 7!S
s[[S 2℄℄envE
℄)
S
s[[raise e℄℄envE
 = envE eTable 4.8: Continuation style semanti
s for Ex
The semanti
 fun
tion S
s for Ex
In order to keep tra
k of the ex
eptions that have been introdu
ed we shall use anex
eption environment. It will be an element, envE, ofEnvE = Ex
eption ! ContGiven an ex
eption environment envE and an ex
eption e, the e�e
t of exe
utingthe remainder of the program starting from the handler for e will then be envE e.The semanti
 fun
tion S
s for the statements of the language Ex
 has fun
-tionalityS
s: Stm ! EnvE ! (Cont ! Cont)The fun
tion is de�ned by the
lauses of Table 4.8. Most of the
lauses are straight-forward extensions of those given forWhile in Table 4.7. The meaning of the blo
k
onstru
t is to exe
ute the body in the updated environment. Therefore the envi-ronment is updated so that e is bound to the e�e
t of exe
uting the remainder ofthe program starting from the handler for e and this is the
ontinuation obtainedby exe
uting �rst S 2 and then the remainder of the program, that is S
s[[S 2℄℄envE
. Finally, in the
lause for raise e we ignore the
ontinuation that is otherwisesupplied. So rather than using
 we
hoose to use envE e.Example 4.76 Let envE be an initial environment and assume that the initial
ontinuation is the identity fun
tion, id. Then we have

4.5 Extensions of While 131S
s[[begin while true do if x�0 then raise exit else x := x�1handle exit: y := 7 end℄℄envE id= (FIX G) idwhere G is de�ned byG g
 s =
ond(B[[true℄℄,
ond(B[[x�0℄℄,
exit, S
s[[x := x�1℄℄envE[exit 7!
exit℄ (g
)),
) s= 8<:
exit s if s x � 0(g
) (s[x7!(s x)�1℄) if s x > 0and the
ontinuation
exit asso
iated with the ex
eption exit is given by
exit s = id (s[y7!7℄) = s[y7!7℄Note that G may
hoose to use the \default"
ontinuation
 or the
ontinuation
exit asso
iated with the ex
eption, as appropriate. We then get(FIX G) id s = 8<: s[y7!7℄ if s x � 0s[x7!0℄[y7!7℄ if s x > 0 2Exer
ise 4.77 Show that FIX G as spe
i�ed in the above example is indeed theleast �xed point, that is
onstru
t the iterands Gn ? and show that their leastupper bound is as spe
i�ed. 2Exer
ise 4.78 ** Extend Exer
ise 4.73 to show the well-de�nedness of the fun
-tion S
s de�ned by the
lauses of Table 4.8. 2Exer
ise 4.79 Suppose that there is a distinguished output variable out 2 Varand that only the �nal value of this variable is of interest. This might motivatede�ningCont = State ,! ZDe�ne the initial
ontinuation
0 2 Cont. What
hanges to EnvE, the fun
tion-ality of S
s and Table 4.8 are ne
essary? 2

132 4 Denotational Semanti
s

Chapter 5Stati
 Program AnalysisWhen implementing a programming language it is
ru
ial that the implementa-tion is faithful to the semanti
s of the language and in Chapter 3 we saw how theoperational semanti
s
ould be used to prove this formally. However, it is also im-portant that the implementation is reasonably eÆ
ient and it is therefore
ommonto
ombine the
ode generation with various analyses
olle
ting information aboutthe programs. In this
hapter we shall develop one su
h analysis in detail but letus �rst
onsider a
ouple of example analyses.Constant propagation is an analysis that determines whether an expressionalways evaluates to a
onstant value and if so determines that value. The analysisis the basis for an optimization
alled
onstant folding where the expression isrepla
ed by the
onstant. As an example the analysis will dete
t that the value ofy in the statementx := 5; y := x ? x + 25will always be 50. It is therefore safe to repla
e the statement byx := 5; y := 50and more eÆ
ient
ode
an be generated.Another example is the dete
tion of signs analysis where the idea is to deter-mine the sign of expressions. So it will for example determine that the value of yin y := x ? x + 25always will be positive (independently of the value assigned to x). This informationwill be useful for an optimization known as
ode elimination: in a statement asy := x ? x + 25; while y � 0 do � � �133

134 5 Stati
 Program Analysisthere is no need to generate
ode for the while-loop be
ause it will never beexe
uted.The example analysis to be developed in this
hapter is a dependen
y analysis.Here the idea is to regard some of the variables as input variables and others asoutput variables. The analysis will then determine whether or not the �nal valuesof the output variables only depend upon the initial values of the input variables. Ifso we shall say that there is a fun
tional dependen
y between the input and outputvariables of the statement. As an example
onsider on
e more the statementy := x ? x + 25and assume that x is an input variable and y an output variable. Then the analysiswill
on
lude that there is indeed a fun
tional dependen
y between the input andoutput variables for the above statement. However, if x is not an input variablethen the analysis will determine that the value of y is dubious as it does not solelydepend on the values of the input variables. In that
ase the
ompiler might
hooseto issue a warning as this probably is not the intention of the programmer.A more interesting example program is the fa
torial statement:y := 1; while : (x = 1) do (y := y ? x; x := x � 1)Again assume that x is an input variable and that y is an output variable. Thenthe �nal value of y only depends upon the initial value of x. However, if we dropthe initialization of y (and assume that y is not an input variable) and
onsiderthe statementwhile : (x = 1) do (y := y ? x; x := x � 1)then the �nal value of y does not only depend on the initial value of the inputvariable x, but also on the initial value of y, so it is not the
ase that the �nal valuesof the output variables only depend on the initial values of the input variables.The kind of analyses exempli�ed above
an be spe
i�ed by de�ning so-
allednon-standard semanti
s of the programming language. These semanti
s will bepatterned after the denotational semanti
s of Chapter 4 but they di�er in thatthey do not operate on the exa
t values of variables and expressions but rather onproperties of the exa
t values. For the
onstant propagation analysis we may useproperties likeany,
onst-0,
onst-1,
onst-2, � � �For the dete
tion of signs analysis we may use properties likeany, pos, neg, and zeroand for the dependen
y analysis we may use properties

5.1 Properties and property states 135d? (meaning dubious) and ok (meaning proper)Usually, the analyses will be part of a
ompiler and it is therefore importantthat they always terminate even for programs that loop when exe
uted. The pri
ewe pay for always getting answers is that we o

asionally get impre
ise answers. Soin the
ase of
onstant propagation the property any means that the analysis wasnot able to dete
t that the value always would be
onstant. Similarly, the propertyany for the dete
tion of signs analysis means that the analysis was not able todete
t a unique sign for the value. For the dependen
y analysis the property d?means that the analysis was not able to dete
t that the value only depends onthe input variables. Note that an analysis that always returns these \fail-safe"properties will be a safe analysis although not a very informative one. Also notethat in the
ase of the dependen
y analysis we
ould always expe
t the answer okif all variables were regarded as input variables but again this is not what we areinterested in.The analysis we shall develop will dete
t whether or not a statement de�nitelyhas a fun
tional dependen
y between its input and output variables. The overallalgorithm operates as follows: initially all input variables have the property okand all other variables the property d?. Then the analysis is performed and whenit has terminated the properties of the output variables are inspe
ted. If they areall ok then the analysis returns the answer YES and otherwise NO?. The analysisis guaranteed to give an answer within a �nite amount of time (depending uponthe statement) but the answer will not be pre
ise in all
ases. However, it willalways be safe in the sense that� if the analysis says YES then there is indeed a fun
tional dependen
y betweeninput and output, but� if the analysis says NO? then there may or may not be a fun
tional depen-den
y between input and output.The analysis will be spe
i�ed
ompositionally just as the denotational semanti
s ofChapter 4. As mentioned above the main di�eren
e between the analysis and thedenotational semanti
s is that the analysis does not operate on exa
t values butrather on properties of exa
t values. Be
ause of the
lose
orresponden
e betweenthe spe
i�
ation of the analysis and the denotational semanti
s we shall prove thesafety of the analysis with respe
t to the denotational semanti
s.5.1 Properties and property statesFor the dependen
y analysis we shall be interested in two properties:� ok meaning that the value de�nitely only depends on the initial values ofthe input variables, and

136 5 Stati
 Program Analysis� d? meaning that the value may depend on the initial values of non-inputvariables, that is the value may be dubious.We shall writeP = fok, d?gfor this set of properties and we use p as a meta-variable ranging over P. It ismore informative to know that an expression has the property ok than d?. As are
ord of this we de�ne a partial order vP on P:ok vP d?, ok vP ok, d? vP d?and depi
ted as� ok� d?
Thus the more informative property is at the bottom of the ordering! We haveFa
t 5.1 (P, vP) is a
omplete latti
e. If Y is a subset of P thenFPY = d? if and only if d? 2 YProof: The proof is straightforward using the de�nition of
omplete latti
es givenin Chapter 4. 2It is
onvenient to write p1 tP p2 instead of FPfp1, p2g. It follows from Fa
t5.1 that the binary operation tP may be given by the tabletP ok d?ok ok d?d? d? d?When reasoning about the safety of the analysis we need to be a bit more pre
iseabout the meaning of the properties with respe
t to the values of the denotationalsemanti
s. While it may be intuitively
lear whether or not the value of a variableonly depends on the input variables, it turns out to be impossible to inspe
t aspe
i�
 value, for example 27, and de
ide whether or not this is indeed the
ase.The reason is that we lose the
ontext in whi
h the value arises. We shall solvethis diÆ
ulty in Se
tion 5.3 and to prepare for the solution we shall de�ne thefollowing parameterized relations:relAexp: P ! (Z � Z ! T)relBexp: P ! (T � T ! T)

5.1 Properties and property states 137For arithmeti
 expressions the relation is de�ned by:relAexp(p)(v 1, v 2) = 8<: tt p = d? or v 1 = v 2� otherwiseand similarly for boolean expression:relBexp(p)(v 1, v 2) = 8<: tt p = d? or v 1 = v 2� otherwiseWe shall often omit the subs
ript when no
onfusion is likely to result. Ea
hof the relations take a property and two values as parameters. Intuitively, theproperty expresses how mu
h the two values are allowed to di�er. Thus d? putsno requirements on the values whereas ok requires that the two values are equal.As an aid to readability we shall often writev 1 � v 2 rel pinstead of rel(p)(v 1, v 2) and we shall say that v 1 and v 2 are equal as far as p is
on
erned (or relative to p).Property statesIn the operational and denotational semanti
s a state maps variables to theirvalues. In the analysis the
ounterpart of this will be a property state whi
h mapsvariables to properties, that is essentially a fun
tion in Var! P. The idea is thatthe initial property state will only map the input variables to ok and that if the�nal property state is a

eptable and maps all output variables to ok then theoutput of the statement will de�nitely be fun
tionally dependent on the input.To make this idea work we have to extend the property state to model oneadditional phenomenon, namely the \
ow of
ontrol". We shall illustrate this inExample 5.3 below but let us �rst introdu
e some notation that will handle theproblem. The set PState of property states ranged over by the meta-variable ps,is de�ned byPState = (Var [fon-tra
kg) ! Pwhere `on-tra
k' is a spe
ial token used to model the \
ow of
ontrol". If `on-tra
k'is mapped to ok this means that the \
ow of
ontrol" only depends upon thevalues of the input variables; if it is mapped to d? this need not be the
ase. Fora property state ps 2 PState we de�ne the setOK(ps) = f x 2 Var [fon-tra
kg j ps x = ok gof \variables" mapped to ok and we say that

138 5 Stati
 Program Analysisps is proper if and only if ps(on-tra
k) = ok.If ps is not proper we shall sometimes say that it is improper.The relationship between property states and states is given by the parameter-ized relation:relStm: PState ! (State � State ! T)de�ned byrelStm(ps)(s1, s2) = 8>>><>>>: tt if ps on-tra
k = d?or 8 x 2 Var \ OK(ps): s1 x = s2 x� otherwiseand again we may omit the subs
ript when no
onfusion is likely to o

ur. Therelation expresses the extent to whi
h two states are allowed to di�er as far as agiven property state is
on
erned. If ps is not proper then rel(ps) will hold on anytwo states. However, if ps is proper then rel(ps) will hold on two states if they areequal on the variables in OK(ps). Phrased di�erently, we may view ps as a pairof glasses that only allows us to see part of the states and rel(ps)(s1, s2) meansthat s1 and s2 look the same when viewed through that pair of glasses. Again weshall writes1 � s2 rel psfor rel(ps)(s1, s2).Example 5.2 Let s1, s2 and ps be given bys1 x = 1 and s1 y = 0 for y 2 Varnfxgs2 x = 2 and s2 y = 0 for y 2 Varnfxgps x = d? and ps y = ok for y 2 (Var [fon-tra
kg)nfxgThen s1 � s2 rel ps. 2Example 5.3 To motivate the need for improper property states, that is the needfor `on-tra
k',
onsider the following statements:S 1: x := 1S 2: x := 2It would be natural to expe
t that the analysis of S 1 will map any property stateps to the property state ps[x7!ok℄ sin
e a
onstant value
annot depend on thevalue of any (non-input) variable. A similar argument holds for S 2. Now
onsiderthe statements

5.1 Properties and property states 139S 11: if x = 1 then S 1 else S 1S 12: if x = 1 then S 1 else S 2Again we may expe
t that the analysis of S 11 will map any property state ps tothe property state ps[x7!ok℄, sin
e S 11 is semanti
ally equivalent to S 1.Con
erning S 12 it will not always be
orre
t for the analysis to map a propertystate ps to ps[x7!ok℄. For an example suppose that ps, s1 and s2 are su
h thatps x = d? and ps y = ok for y 2 (Var [fon-tra
kg)nfxgs1 x = 1 and s1 y = 0 for y 2 Varnfxgs2 x = 2 and s2 y = 0 for y 2 VarnfxgThen Example 5.2 givess1 � s2 rel psbut Sds[[S 12℄℄s1 � Sds[[S 12℄℄s2 rel ps[x7!ok℄ fails be
ause Sds[[S 12℄℄s1 = s1 andSds[[S 12℄℄s2 = s2 and s1 x 6= s2 x.However, from the point of view of the analysis there is no di�eren
e betweenS 1 and S 2 be
ause neither the value of 1 nor 2 depends on the values of the inputvariables. Sin
e the analysis is
ompositionally de�ned this means that there
an be no di�eren
e between S 11 and S 12 from the point of view of the analysis.Therefore we have to a

ept that also the analysis of S 11 should not allow mappingan arbitrary property state ps to ps[x7!ok℄.The di�eren
e between S 1 and S 2 arises when the \
ow of
ontrol" does notdepend on the input variables and it is here the need for the spe
ial token `on-tra
k'
omes in. We shall transform a property state into an improper one, by mapping`on-tra
k' to d?, whenever the \
ow of
ontrol" is not \fun
tionally dependent"on the input variables. Thus if ps x = d? then it is the test, x = 1, in S 11and S 12 that will be responsible for mapping ps into the improper property stateps[on-tra
k7!d?℄ and then the e�e
t of analysing S 1 and S 2 does not matter aslong as an improper property state is not mapped into a proper one. 2Our next task will be to endow PState with some partially ordered stru
tureand to investigate the properties of relStm. Con
erning the former this will be aninstan
e of a general pro
edure:Lemma 5.4 Assume that S is a non-empty set and that (D , v) is a partiallyordered set. Let v0 be the ordering on the set S!D de�ned byf 1 v0 f 2 if and only if f 1 x v f 2 x for all x 2 SThen (S!D , v0) is a partially ordered set. Furthermore, (S!D , v0) is a

po ifD is and it is a
omplete latti
e if D is. In both
ases we have

140 5 Stati
 Program Analysis(F0Y) x = F f f x j f 2 Y gso that least upper bounds are determined pointwise.Proof: It is straightforward to verify that v0 is a partial order so we omit thedetails. We shall �rst prove the lemma in the
ase where D is a
omplete latti
eso let Y be a subset of S ! D . Then the formula(F0Y) x = F f f x j f 2 Y gde�nes an element F0Y of S ! D be
ause D being a
omplete latti
e means thatFf f x j f 2 Y g exists for all x of S . This shows that F0Y is a well-de�nedelement of S ! D . To see that F0Y is an upper bound of Y let f 0 2 Y and weshall show that f 0 v0 F0Y . This amounts to
onsidering an arbitrary x in S andshowingf 0 x v Ff f x j f 2 Y gand this is immediate be
ause F is the least upper bound operation in D . To seethat F0Y is the least upper bound of Y let f 1 be an upper bound of Y and weshall show that F0Y v0 f 1. This amounts to showingFf f x j f 2 Y g v f 1 xfor an arbitrary x 2 S . However, this is immediate be
ause f 1 x must be an upperbound of f f x j f 2 Y g and be
ause F is the least upper bound operation in D .To prove the other part of the lemma assume that D is a

po and that Y isa
hain in S ! D . The formula(F0Y) x = F f f x j f 2 Y gde�nes an element F0Y of S ! D : ea
h f f x j f 2 Y g will be a
hain in Dbe
ause Y is a
hain and hen
e ea
h Ff f x j f 2 Y g exists be
ause D is a

po.That F0Y is the least upper bound of Y in S ! D follows as above. 2Instantiating S to be Var [fon-tra
kg and D to be P we get:Corollary 5.5 Let vPS be the ordering on PState de�ned byps1 vPS ps2 if and only if ps1 x vP ps2 x for all x 2 Var [fon-tra
kgThen (PState, vPS) is a
omplete latti
e. In parti
ular, the least upper boundFPSY of a subset Y of PState is
hara
terized by(FPSY) x = FP f ps x j ps 2 Y g

5.1 Properties and property states 141We shall write lost for the property state ps that maps all variables to d? andthat maps `on-tra
k' to d?. Similarly, we shall write init for the property statethat maps all variables to ok and that maps `on-tra
k' to ok. Note that init isthe least element of PState.Exer
ise 5.6 (Essential) Show thatps1 vPS ps2 if and only if OK(ps1) � OK(ps2)Next show thatOK(FPS Y) = Tf OK(ps) j ps 2 Y gwhenever Y is a non-empty subset of PState. 2Properties of relTo study the properties of the parameterized relation rel we need a notion of anequivalen
e relation. A relationR: E � E ! Tis an equivalen
e relation on a set E if and only ifR(e1, e1) (re
exivity)R(e1, e2) and R(e2, e3) imply R(e1, e3) (transitivity)R(e1, e2) implies R(e2, e1) (symmetry)for all e1, e2 and e3 of E .Exer
ise 5.7 Show that relAexp(p), relBexp(p) and relStm(ps) are equivalen
e re-lations for all
hoi
es of p 2 P and ps 2 PState. 2Ea
h of relAexp, relBexp and relStm are examples of parameterized (equivalen
e)relations. In general a parameterized relation is of the formR: D ! (E � E ! T)where (D , v) is a partially ordered set, E is a set and ea
h R(d) is a relation. Weshall say that a parameterized relation R is a Kripke-relation ifd1 v d2 implies that for all e1, e2 2 E :if R(d1)(e1, e2) then R(d2)(e1, e2)Note that this is a kind of monotoni
ity property.

142 5 Stati
 Program Analysis
Lemma 5.8 relStm is a Kripke-relation.Proof: Let ps1 and ps2 be su
h that ps1 vPS ps2 and assume thats1 � s2 rel ps1holds for all states s1 and s2. We must shows1 � s2 rel ps2If ps2 on-tra
k = d? this is immediate from the de�nition of relStm. So assumethat ps2 on-tra
k = ok. In this
ase we must show8x 2 OK(ps2) \ Var: s1 x = s2 xSin
e ps1 vPS ps2 and ps2 on-tra
k = ok it must be the
ase that ps1 on-tra
k isok. From s1 � s2 rel ps1 we therefore get8x 2 OK(ps1) \ Var: s1 x = s2 xFrom Exer
ise 5.6 and the assumption ps1 vPS ps2 we get OK(ps1) � OK(ps2)and thereby we get the desired result. 2Exer
ise 5.9 (Essential) Show that relAexp and relBexp are Kripke-relations. 25.2 The analysisWhen spe
ifying the analysis we shall be
on
erned with expressions as well asstatements.ExpressionsThe analysis of an arithmeti
 expression a will be spe
i�ed by a (total) fun
tionPA[[a℄℄ from property states to properties:PA: Aexp ! (PState ! P)Similarly, the analysis of a boolean expression b will be de�ned by a (total) fun
tionPB[[b℄℄ from property states to properties:PB: Bexp ! (PState ! P)

5.2 The analysis 143PA[[n℄℄ps = 8<: ok if ps on-tra
k = okd? otherwisePA[[x ℄℄ps = 8<: ps x if ps on-tra
k = okd? otherwisePA[[a1 + a2℄℄ps = (PA[[a1℄℄ps) tP (PA[[a2℄℄ps)PA[[a1 ? a2℄℄ps = (PA[[a1℄℄ps) tP (PA[[a2℄℄ps)PA[[a1 � a2℄℄ps = (PA[[a1℄℄ps) tP (PA[[a2℄℄ps)PB[[true℄℄ps = 8<: ok if ps on-tra
k = okd? otherwisePB[[false℄℄ps = 8<: ok if ps on-tra
k = okd? otherwisePB[[a1 = a2℄℄ps = (PA[[a1℄℄ps) tP (PA[[a2℄℄ps)PB[[a1 � a2℄℄ps = (PA[[a1℄℄ps) tP (PA[[a2℄℄ps)PB[[: b℄℄ps = PB[[b℄℄psPB[[b1 ^ b2℄℄ps = (PB[[b1℄℄ps) tP (PB[[b2℄℄ps)Table 5.1: Analysis of expressionsThe de�ning
lauses are given in Table 5.1. The
lause for n re
e
ts that the valueof n in a proper property state ps does not depend on any variable and thereforeit will have the property ok. The property of a variable x in a proper propertystate ps is the property bound to x in ps, that is ps x . Thus if ps is the initialproperty state then the intention is that PA[[x ℄℄ps is ok if and only if x is one ofthe input variables. For a
omposite expression, like a1 + a2, the idea is that it
an only have the property ok if both subexpressions have that property. This isensured by the binary operation tP introdu
ed in Se
tion 5.1.Example 5.10 If ps x = ok and ps on-tra
k = ok then PA[[x + 1℄℄ps = oksin
e PA[[x℄℄ps = ok and PA[[1℄℄ps = ok. On the other hand, if ps x = d? thenPA[[x + 1℄℄ps = d? be
ause PA[[x℄℄ps = d?.Furthermore, PB[[x = x℄℄ps = d? if ps x = d? even though the test x = x willevaluate to tt independently of whether or not x is initialized properly. 2The fun
tions PA[[a℄℄ and PB[[b℄℄ are
losely
onne
ted with the sets of freevariables de�ned in Chapter 1:

144 5 Stati
 Program AnalysisPS[[x := a℄℄ ps = ps[x 7!PA[[a℄℄ps℄PS[[skip℄℄ = idPS[[S 1;S 2℄℄ = PS[[S 2℄℄ Æ PS[[S 1℄℄PS[[if b then S 1 else S 2℄℄ =
ondP(PB[[b℄℄, PS[[S 1℄℄, PS [[S 2℄℄)PS[[while b do S ℄℄ = FIX Hwhere H h =
ondP(PB[[b℄℄, h Æ PS [[S ℄℄, id)Table 5.2: Analysis of statements in WhileExer
ise 5.11 (Essential) Prove that for every arithmeti
 expression a we havePA[[a℄℄ps = ok if and only if FV(a) [fon-tra
kg � OK(ps)Formulate and prove a similar result for boolean expressions. Dedu
e that for alla of Aexp we get PA[[a℄℄ps = d? if ps is improper, and that for all b of Bexp weget PB[[b℄℄ps = d? if ps is improper. 2StatementsTurning to statements we shall spe
ify their analysis by a fun
tion PS of fun
-tionality:PS : Stm ! (PState ! PState)The totality of PS [[S ℄℄ re
e
ts that we shall be able to analyse all statementsin
luding a statement like while true do skip that loops. The de�nition of PS isgiven in Table 5.2 and the
lauses for assignment, skip and
omposition are mu
has in the dire
t style denotational semanti
s of Chapter 4. The remaining
lauseswill be explained below.Example 5.12 Consider the statementy := xFirst assume that ps is a proper property state with ps x = ok and ps y = d?.Then we have(PS [[y := x℄℄ps) x = ok(PS [[y := x℄℄ps) y = ok(PS [[y := x℄℄ps) on-tra
k = ok

5.2 The analysis 145Sin
e PS[[y := x℄℄ps is proper we
on
lude that both x and y only depend on theinput variables after y is assigned a value that only depends on the input variables.Assume next that ps y = ok but ps x = d?. Then(PS[[y := x℄℄ps) y = d?showing that when a dubious value is used in an assignment then the assignedvariable will get a dubious value as well. 2Exer
ise 5.13 Consider the statements S 1 and S 2 of Example 5.3. Use Tables5.1 and 5.2 to
hara
terize the behaviour of PS[[S 1℄℄ and PS[[S 2℄℄ on proper andimproper property states. Anti
ipating Se
tion 5.3 show thats1 � s2 rel ps implies Sds[[S i℄℄s1 � Sds[[S i℄℄s2 rel PS[[S i℄℄psfor i = 1, 2 and for all ps 2 PState. 2In the
lause for if b then S 1 else S 2 we use the auxiliary fun
tion
ondPde�ned by
ondP(f , h1, h2) ps = 8<: (h1 ps) tPS (h2 ps) if f ps = oklost if f ps = d?First
onsider the
ase where we are su

essful in analysing the
ondition, that iswhere f ps = ok. For ea
h variable x we
an determine the result of analysingea
h of the bran
hes, namely (h1 ps) x for the true bran
h and (h2 ps) x for thefalse bran
h. The least upper bound of these two results will be the new propertybound to x , that is the new property state will map x to((h1 ps) x) tP ((h2 ps) x)If the analysis of the
ondition is not su

essful, that is f ps = d?, then the analysisof the
onditional will fail and we shall therefore use the property state lost.Example 5.14 Consider now the statementif x = x then z := y else y := zClearly, the �nal value of z
an be determined uniquely from the initial value ofy. However, if z is dubious then the analysis
annot give this result. To see thisassume that ps is a proper property state su
h that ps x = ok, ps y = ok andps z = d?. Then(PS[[if x = x then z := y else y := z℄℄ps) z= (
ondP(PB[[x = x℄℄, PS[[z := y℄℄, PS [[y := z℄℄) ps) z= (PS[[z := y℄℄ ps tP PS[[y := z℄℄ ps) z= d?

146 5 Stati
 Program Analysisbe
ause PB[[x = x℄℄ps = ok, (PS[[z := y℄℄ps) z = ok but (PS[[y := z℄℄ps) z = d?.So even though the false bran
h never will be exe
uted it will in
uen
e the resultobtained by the analysis.Similarly, even if y and z are not dubious but x is, the analysis
annot determinethat the �nal value of z only depends on the value of y. To see this assume thatps is a proper property state su
h that ps x = d?, ps y = ok and ps z = ok. Wethen getPS [[if x = x then z := y else y := z℄℄ps=
ondP(PB[[x = x℄℄, PS [[z := y℄℄, PS[[y := z℄℄)ps= lostbe
ause PB[[x = x℄℄ps = d?. These examples show that the result of the analysisis safe but usually somewhat impre
ise. More
omplex analyses
ould do better(for example by trying to predi
t the out
ome of tests) but in general no de
idableanalysis
an provide exa
t results. 2Exer
ise 5.15 Consider the statements S 11 and S 12 of Example 5.3. Use Tables5.1 and 5.2 to
hara
terize the behaviour of PS[[S 11℄℄ and PS[[S 12℄℄ on proper andimproper property states. Anti
ipating Se
tion 5.3 show thats1 � s2 rel ps implies Sds[[S i℄℄s1 � Sds[[S i℄℄s2 rel PS [[S i℄℄psfor i = 11, 12 and for all ps 2 PState. Finally argue that it would not be sensibleto use
ond0P(f , h1, h2) ps = (h1 ps) tPS (h2 ps)instead of the
ondP de�ned above. 2In the
lause for the while-loop we also use the fun
tion
ondP and otherwisethe
lause is as in the dire
t style denotational semanti
s of Chapter 4. In parti
ularwe use the �xed point operation FIX as it
orresponds to unfolding the while-loopa number of times | on
e for ea
h time the analysis traverses the loop. As inChapter 4 the �xed point is de�ned byFIX H = Ff H n ? j n � 0 gwhere the fun
tionality of H isH : (PState ! PState) ! (PState ! PState)and where PState! PState is the set of total fun
tions fromPState to PState.In order for this to make sense H must be a
ontinuous fun
tion on a

po with? as its least element. We shall shortly verify that this is indeed the
ase.

5.2 The analysis 147Example 5.16 We are now in a position where we
an attempt the appli
ationof the analysis to the fa
torial statement:PS[[y := 1; while :(x=1) do (y := y?x; x := x�1)℄℄We shall apply this fun
tion to the proper property state ps0 that maps x to okand all other variables (in
luding y) to d? as this
orresponds to viewing x as theonly input variable of the statement.To do so we use the
lauses of Tables 5.1 and 5.2 and getPS[[y := 1; while :(x=1) do (y := y?x; x := x�1)℄℄ ps0= (FIX H) (ps0[y7!ok℄)whereH h =
ondP(PB[[:(x=1)℄℄, h Æ PS[[y := y?x; x := x�1℄℄, id)We �rst simplify H and obtain(H h) ps = 8<: lost if ps on-tra
k=d? or ps x=d?(h ps) tPS ps if ps on-tra
k=ok and ps x=okAt this point we shall pretend that we have shown the following property of H (tobe proved in Exer
ise 5.18):if H n ? = H n+1 ? for some nthen FIX H = H n ?where ? is the fun
tion ? ps = init for all ps. We
an now
al
ulate the iterandsH 0 ?, H 1 ?, � � �. We obtain(H 0 ?) ps = init(H 1 ?) ps = 8<: lost if ps x = d? or ps not properps if ps x = ok and ps proper(H 2 ?) ps = 8<: lost if ps x = d? or ps not properps if ps x = ok and ps properwhere ps is an arbitrary property state. Sin
e H 1 ? = H 2 ? our assumption aboveensures that we have found the least �xed point for H :(FIX H) ps = 8<: lost if ps x = d? or ps not properps if ps x = ok and ps properIt is now straightforward to verify that (FIX H) (ps0[y7!ok℄) y = ok and that(FIX H)(ps0[y7!ok℄) is proper. We
on
lude that there is a fun
tional dependen
ybetween the input variable x and the output variable y. 2

148 5 Stati
 Program AnalysisWell-de�nedness of PSHaving spe
i�ed the analysis we shall now show that it is indeed well-de�ned. Asin Chapter 4 there are three stages:� First we introdu
e a partial order on PState!PState su
h that it be
omesa

po.� Then we show that
ertain auxiliary fun
tions used in the de�nition of PSare
ontinuous.� Finally we show that the �xed point operator only is applied to
ontinuousfun
tions.Thus our �rst task is to de�ne a partial order on PState ! PState and for thiswe use the approa
h developed in Lemma 5.4. Instantiating the non-empty set Sto the set PState and the partially ordered set (D , v) to (PState, vPS) we get:Corollary 5.17 Let v be the ordering on PState ! PState de�ned byh1 v h2 if and only if h1 ps vPS h2 ps for all property states psThen (PState ! PState, v) is a
omplete latti
e, and hen
e a

po, and theformula for least upper bounds is(F Y) ps = FPS f h ps j h 2 Y gfor any subset Y of PState ! PState.Exer
ise 5.18 (Essential) Show that the assumption made in Example 5.16 is
orre
t. That is �rst show thatH : (PState ! PState) ! (PState ! PState)as de�ned in Example 5.16 is indeed a monotone fun
tion. Next show that for anymonotone fun
tion H of the above fun
tionality ifH n ? = H n+1 ?for some n then H n ? is the least �xed point of H . 2Our se
ond task is to ensure that the fun
tion H used in Table 5.2 is a
on-tinuous fun
tion from PState ! PState to PState ! PState. For this wefollow the approa
h of Se
tion 4.3 and show that
ondP is
ontinuous in its se
ondargument and later that
omposition is
ontinuous in its �rst argument.

5.2 The analysis 149
Lemma 5.19 Let f : PState ! P, h0: PState ! PState and de�neH h =
ondP(f , h, h0)Then H : (PState!PState) ! (PState!PState) is a
ontinuous fun
tion.Proof: We shall �rst prove that H is monotone so let h1 and h2 be su
h thath1 v h2, that is h1 ps vPS h2 ps for all property states ps. We then have to showthat
ondP(f , h1, h0) ps vPS
ondP(f , h2, h0) ps. The proof is by
ases on thevalue of f ps. If f ps = ok then the result follows sin
e(h1 ps) tPS (h0 ps) vPS (h2 ps) tPS (h0 ps)If f ps = d? then the result follows sin
e lost vPS lost.To see that H is
ontinuous let Y be a non-empty
hain in PState! PState.Using the
hara
terization of least upper bounds in PState given in Corollary 5.17we see that we must show that(H (FY)) ps = FPS f (H h) ps j h 2 Y gfor all property states ps in PState. The proof is by
ases on the value of f ps.If f ps = d? then we have (H (FY)) ps = lost andFPS f (H h) ps j h 2Y g = FPS f lost j h 2 Y g= lostwhere the last equality is be
ause Y is not empty. Thus we have proved therequired result in this
ase. If f ps = ok then the
hara
terization of least upperbounds in PState gives:(H (FY)) ps = ((FY) ps) tPS (h0 ps)= (FPS f h ps j h 2 Y g) tPS (h0 ps)= FPS f h ps j h 2 Y [f h0 g gand FPS f (H h) ps j h 2 Y g = FPS f (h ps) tPS (h0 ps) j h 2 Y g= FPS f h ps j h 2 Y [f h0 g gwhere the last equality follows be
ause Y is not empty. Thus the result follows inthis
ase. 2

150 5 Stati
 Program AnalysisExer
ise 5.20 Let f : PState ! P, h0: PState ! PState and de�neH h =
ondP(f , h0, h)Show that H : (PState! PState) ! (PState! PState) is a
ontinuous fun
-tion. 2Lemma 5.21 Let h0: PState ! PState and de�neH h = h Æ h0Then H : (PState!PState) ! (PState!PState) is a
ontinuous fun
tion.Proof: We shall �rst show that H is monotone so let h1 and h2 be su
h thath1 v h2, that is h1 ps vPS h2 ps for all property states ps. Clearly we then haveh1(h0 ps) vPS h2(h0 ps) for all property states ps and thereby we have proved themonotoni
ity of H .To prove the
ontinuity let Y be a non-empty
hain in PState ! PState.We must show that(H (FY)) ps = (Ff H h j h 2 Y g) psfor all property states ps. Using the
hara
terization of least upper bounds givenin Corollary 5.17 we get(H (FY)) ps = ((FY) Æ h0) ps= (FY) (h0 ps)= FPS f h (h0 ps) j h 2 Y gand (Ff H h j h 2 Y g) ps = FPS f (H h) ps j h 2 Y g= FPS f (h Æ h0) ps j h 2 Y gHen
e the result follows. 2This suÆ
es for showing the well-de�nedness of PS :Proposition 5.22 The semanti
 fun
tion PS [[S ℄℄: PState ! PState of Table5.2 is a well-de�ned fun
tion for all statements S of the language While.Proof: The proof is by stru
tural indu
tion on S and only the
ase of the while-loop is interesting. We note that the fun
tion H used in Table 5.2 is given by

5.2 The analysis 151H = H 1 Æ H 2whereH 1 h =
ondP(PB[[b℄℄, h, id)H 2 h = h Æ PS[[S ℄℄As H 1 and H 2 are
ontinuous fun
tions by Lemmas 5.19 and 5.21 we have thatH is a
ontinuous fun
tion by Lemma 4.35. Hen
e FIX H is well-de�ned and this
ompletes the proof. 2Exer
ise 5.23 Consider the statementz := 0; while y�x do (z := z+1; x := x�y)where x and y are input variables and z is the output variable. Use the approa
hof Example 5.16 to show that there is a fun
tional dependen
y between the inputand output variables. 2Exer
ise 5.24 Apply the analysis PS to the statement while true do skip andexplain why the analysis terminates. 2Exer
ise 5.25 Extend While with the statement repeat S until b and givethe new (
ompositional)
lause for PS . Dis
uss your extension and validate thewell-de�nedness. 2Exer
ise 5.26 Extend While with the statement for x := a1 to a2 do S andgive the new (
ompositional)
lause for PS. Dis
uss your extension and validatethe well-de�nedness. 2Exer
ise 5.27 (Essential) Show that for every statement Sps on-tra
k v (PS[[S ℄℄ps) on-tra
kso that ps must be proper if PS [[S ℄℄ps is. In the
ase of while b do S you should�rst prove that for all n � 1:ps on-tra
k v ((H n ?) ps) on-tra
kwhere ? ps 0 = init for all ps 0 and H h =
ondP(PB[[b℄℄, h Æ PS[[S ℄℄, id). 2Exer
ise 5.28 Show that there exists h0: PState! PState su
h that H de�nedby H h = h0 Æ h is not even a monotone fun
tion from PState ! PState toPState ! PState. 2

152 5 Stati
 Program AnalysisRemark The example of the above exer
ise indi
ates a major departure from these
ure world of Chapter 4. Lu
kily an insuran
e poli
y
an be arranged. Thepremium is to repla
e all o

urren
es ofPState ! PState and PState ! Pby [PState ! PState℄ and [PState ! P℄where [D ! E ℄ = f f : D ! E j f is
ontinuous g. One
an then show that[D ! E ℄ is a

po if D and E are and that the
hara
terization of least upperbounds given in Lemma 5.4 still holds. Furthermore, one
an show that Exer
ise5.6 ensures that PA[[a℄℄ and PB[[b℄℄ are
ontinuous. Finally, the entire developmentin this se
tion still
arries through although there are additional proof obligationsto be
arried out. In this setting one gets that if h0: [PState ! PState℄ then Hde�ned by H h = h0 Æ h is indeed a
ontinuous fun
tion from [PState! PState℄to [PState ! PState℄. 2To summarize, the well-de�nedness of PS relies on the following results estab-lished above: Proof Summary for While:Well-de�nedness of Stati
 Analysis1: The set PState ! PState equipped with an appropriate ordering v isa

po (Corollary 5.17).2: Certain fun
tions 	: (PState ! PState) ! (PState ! PState) are
ontinuous (Lemmas 5.19 and 5.21).3: In the de�nition of PS we only apply the �xed point operation to
ontin-uous fun
tions (Proposition 5.22).Our overall algorithm for determining whether or not there is a fun
tional depen-den
y between input and output variables then pro
eeds as follows:INPUT: a statement S of Whilea set I � Var of input variablesa set O � Var of output variablesOUTPUT: YES, if there de�nitely is a fun
tional dependen
yNO?, if there may not be a fun
tional dependen
y

5.3 Safety of the analysis 153METHOD: let psI be uniquely determined by OK(psI) = I [fon-tra
kglet psO = PS[[S ℄℄psIoutput YES if OK(psO) � O [fon-tra
kgoutput NO? otherwise5.3 Safety of the analysisIn this se
tion we shall show that the analysis fun
tions PA, PB and PS are
orre
t with respe
t to the semanti
 fun
tions A, B and Sds. This amounts to aformalization of the
onsiderations that were already illustrated in Exer
ises 5.13and 5.15. We begin with the rather simple
ase of arithmeti
 expressions.ExpressionsLet g : State ! Z be a fun
tion, perhaps of the form A[[a℄℄ for some arithmeti
expression a 2 Aexp, and let h: PState ! P be another fun
tion, perhaps ofthe form PA[[a℄℄ for some arithmeti
 expression a 2 Aexp. We shall introdu
e arelationg satAexp hfor expressing when the analysis h is
orre
t with respe
t to the semanti
s g . It isde�ned bys1 � s2 relStm ps implies g s1 � g s2 relAexp h psfor all states s1 and s2 and property states ps. This
ondition says that the resultsof g will be suitably related provided that the arguments are. It is perhaps moreintuitive when rephrased as(s1 � s2 relStm ps) and (h ps = ok) imply g s1 = g s2The safety of the analysis PA is then expressed byFa
t 5.29 For all arithmeti
 expressions a 2 Aexp we haveA[[a℄℄ satAexp PA[[a℄℄Proof: This is an immediate
onsequen
e of Lemma 1.11 and Exer
ise 5.11. 2The analysis PB of boolean expressions is safe in the following sense:Exer
ise 5.30 (Essential)Repeat the development for boolean expressions, thatis de�ne a relation satBexp and show thatB[[b℄℄ satBexp PB[[b℄℄for all boolean expressions b 2 Bexp. 2

154 5 Stati
 Program AnalysisStatementsThe safety of the analysis of statements will express that if OK(ps) in
ludes allthe input variables and if OK(PS[[S ℄℄ps) in
ludes `on-tra
k' and all the outputvariables then Sds[[S ℄℄ determines a fun
tional relationship between the input andoutput variables. This validation is important be
ause although the intuitionabout ok meaning \depending only on input variables" goes a long way towardsmotivating the analysis, it is not perfe
t. As we already mentioned in Se
tion 5.1one
annot inspe
t a value, like 27, and determine whether it has its value be
auseit only depends on input variables or be
ause it just happened to be 27. To aidthe intuition in determining that no errors have been made in the de�nition ofthe analysis it is ne
essary to give a formal statement of the relationship between
omputations in the standard (denotational) semanti
s and in the analysis.Our key tool will be the relation s1 � s2 rel ps and we shall show that if thisrelationship holds before the statement is exe
uted and analysed then either thestatement will loop on both states or the same relationship will hold between the�nal states and the �nal property state (provided that the analysis does not get\lost"). We shall formalize this by de�ning a relationg satStm hbetween a fun
tion g : State ,! State, perhaps of the form Sds[[S ℄℄ for some S inStm, and another fun
tion h: PState! PState, perhaps of the form PS[[S ℄℄ forsome S in Stm. The formal de�nition amounts to(s1 � s2 rel ps) and (h ps is proper)imply(g s1 = undef and g s2 = undef) or(g s1 6= undef and g s2 6= undef and g s1 � g s2 rel h ps)for all states s1, s2 2 State and all property states ps 2 PState. To motivatethis de�nition
onsider two states s1 and s2 that are equal relative to ps. If ps isproper this means that s1 x = s2 x for all variables x in OK(ps). The analysisof the statement may get \lost" in whi
h
ase h ps is not proper and we
annotdedu
e anything about the behaviour of the statement. Alternatively, it may bethe
ase that h ps is proper and in that
ase the statement must behave in thesame way whether exe
uted from s1 or from s2. In parti
ular� the statement may enter a loop when exe
uted from s1 and s2, that isg s1 = undef and g s2 = undef, or� the statement does not enter a loop when exe
uted from s1 and s2, that isg s1 6= undef and g s2 6= undef.

5.3 Safety of the analysis 155In the latter
ase the two �nal states g s1 and g s2 must be equal relative to theresulting property state h ps, that is (g s1) x = (g s2) x for all variables x inOK(h ps).We may then formulate the desired relationship between the semanti
s and theanalysis as follows:Theorem 5.31 For all statements S of While we have Sds[[S ℄℄ satStm PS[[S ℄℄.Before
ondu
ting the proof we need to establish some properties of the auxil-iary operations
omposition and
onditional.Lemma 5.32 Let g1, g2: State ,! State and h1, h2: PState ! PState andassume thatps on-tra
k vP (h2 ps) on-tra
k (*)holds for all ps 2 PState. Theng1 satStm h1 and g2 satStm h2 imply g2 Æ g1 satStm h2 Æ h1Proof: Let s1, s2 and ps be su
h thats1 � s2 rel ps, and (h2 Æ h1) ps is properUsing that h2 (h1 ps) is proper we get from (*) that h1 ps must be proper as well(by taking ps to be h1 ps). So from the assumption g1 satStm h1 we getg1 s1 = undef and g1 s2 = undef, org1 s1 6= undef and g1 s2 6= undef and g1 s1 � g1 s2 rel h1 psIn the �rst
ase we are �nished sin
e it follows that (g2 Æ g1) s1 = undef and that(g2 Æ g1) s2 = undef. In the se
ond
ase we use thatg1 s1 � g1 s2 rel h1 ps, and h2(h1 ps) is properThe assumption g2 satStm h2 then givesg2 (g1 s1) = undef and g2 (g1 s2) = undef, org2 (g1 s1) 6= undef and g2 (g1 s2) 6= undef andg2(g1 s1) � g2(g1 s2) rel h2(h1 ps)In both
ases we have
ompleted the proof. 2

156 5 Stati
 Program Analysis
Lemma 5.33 Assume that g1, g2: State ,! State, and g : State ! T and thath1, h2: PState ! PState and f : PState ! P. Theng satBexp f , g1 satStm h1 and g2 satStm h2 imply
ond(g , g1, g2) satStm
ondP(f , h1, h2)Proof: Let s1, s2 and ps be su
h thats1 � s2 rel ps and
ondP(f , h1, h2) ps is properFirst assume that f ps = d?. This
ase turns out to be impossible sin
e then
ondP(f , h1, h2) ps = lost so
ondP(f , h1, h2) ps
annot be proper.So we know that f ps = ok. From g satBexp f we then get g s1 = g s2. Wealso get that
ondP(f , h1, h2) ps = (h1 ps) tPS (h2 ps). Thus h1 ps as well as h2ps must be proper sin
e otherwise
ondP(f , h1, h2) ps
annot be proper. Now leti denote the bran
h
hosen by the test g . We then haves1 � s2 rel ps and h i ps is properFrom the assumption g i satStm h i we therefore getg i s1 = undef and g i s2 = undef, org i s1 6= undef and g i s2 6= undef and g i s1 � g i s2 rel h i psIn the �rst
ase we get
ond(g , g1, g2) s1 = undef and
ond(g , g1, g2) s2 = undefand we are �nished. In the se
ond
ase we get
ond(g , g1, g2) s1 6= undef and
ond(g , g1, g2) s2 6= undefFurthermore, we have
ond(g , g1, g2) s1 �
ond(g , g1, g2) s2 rel h i psClearly h i ps v h1 ps tPS h2 ps and using the de�nition of
ondP and Lemma 5.8we get
ond(g , g1, g2) s1 �
ond(g , g1, g2) s2 rel
ondP(f , h1, h2) psas required. 2We now have the apparatus needed to show the safety of PS:Proof of Theorem 5.31: We shall show that Sds[[S ℄℄ satStm PS[[S ℄℄ and wepro
eed by stru
tural indu
tion on the statement S .The
ase x := a: Let s1, s2 and ps be given su
h that

5.3 Safety of the analysis 157s1 � s2 rel ps and PS[[x := a℄℄ps is properIt then follows from Exer
ise 5.27 that ps is proper be
ause PS[[x := a℄℄ps is. Alsoboth Sds[[x := a℄℄s1 and Sds[[x := a℄℄s2 will be de�ned so we only have to show that(Sds[[x := a℄℄s1) y = (Sds[[x := a℄℄s2) yfor all y 2 Var \ OK(PS[[x := a℄℄ps). If y 6= x and y is in OK(PS[[x := a℄℄ps) theny 2 OK(ps) and it is immediate from the de�nition of Sds that (Sds[[x := a℄℄s1) y= (Sds[[x := a℄℄s2) y . If y = x and x is in OK(PS[[x := a℄℄ps) then we use theassumption s1 � s2 rel ps together with (PS [[x := a℄℄ps) x = ok to getA[[a℄℄s1 = A[[a℄℄s2by Fa
t 5.29. Hen
e (Sds[[x := a℄℄s1) y = (Sds[[x := a℄℄s2) y follows also in this
ase. This proves the required relationship.The
ase skip: Straightforward.The
ase S 1;S 2: The indu
tion hypothesis applied to S 1 and S 2 givesSds[[S 1℄℄ satStm PS[[S 1℄℄ and Sds[[S 2℄℄ satStm PS [[S 2℄℄It follows from Exer
ise 5.27 that ps on-tra
k vP (PS[[S 2℄℄ps) on-tra
k holds forall property states ps. The desired resultSds[[S 2℄℄ Æ Sds[[S 1℄℄ satStm PS [[S 2℄℄ Æ PS[[S 1℄℄then follows from Lemma 5.32.The
ase if b then S 1 else S 2: From Exer
ise 5.30 we haveB[[b℄℄ satBexp PB[[b℄℄and the indu
tion hypothesis applied to S 1 and S 2 givesSds[[S 1℄℄ satStm PS[[S 1℄℄ and Sds[[S 2℄℄ satStm PS [[S 2℄℄The desired result
ond(B[[b℄℄, Sds[[S 1℄℄, Sds[[S 2℄℄) satStm
ondP(PB[[b℄℄, PS[[S 1℄℄, PS [[S 2℄℄)then follows from Lemma 5.33.The
ase while b do S : We must prove thatFIX(G) satStm FIX(H)where

158 5 Stati
 Program AnalysisG g =
ond (B[[b℄℄, g Æ Sds[[S ℄℄, id)H h =
ondP (PB[[b℄℄, h Æ PS[[S ℄℄, id)To do this we re
all the de�nition of the least �xed points:FIX G = FfGn g0 j n � 0 g where g0 s = undef for all sFIX H = FfH n h0 j n � 0 g where h0 ps = init for all psThe proof pro
eeds in two stages. We begin by proving thatGn g0 satStm FIX H for all n (*)and thenFIX G satStm FIX H (**)We prove (*) by indu
tion on n. For the base
ase we observe thatg0 satStm FIX Hholds trivially sin
e g0 s = undef for all states s. For the indu
tion step we assumethat Gn g0 satStm FIX Hand we shall prove the result for n+1. We haveB[[b℄℄ satBexp PB[[b℄℄from Exer
ise 5.30,Sds[[S ℄℄ satStm PS[[S ℄℄from the indu
tion hypothesis applied to the body of the while-loop, and it is
lear thatid satStm idBy Exer
ise 5.27 we also haveps on-tra
k vP ((FIX H) ps) on-tra
kfor all property states ps. We then obtain
ond(B[[b℄℄, (Gn g0)ÆSds[[S ℄℄, id) satStm
ondP(PB[[b℄℄, (FIX H)ÆPS[[S ℄℄, id)from Lemmas 5.32 and 5.33 and this is indeed the desired result sin
e the right-hand side amounts to H (FIX H) whi
h equals FIX H .Finally we must show (**). This amounts to showingFY satStm FIX H

5.3 Safety of the analysis 159where Y = f Gn g0 j n � 0 g. So assume thats1 � s2 rel ps and (FIX H) ps is properSin
e g satStm FIX H holds for all g 2 Y by (*) we get that eitherg s1 = undef and g s2 = undef, org s1 6= undef and g s2 6= undef and g s1 � g s2 rel (FIX H) psIf (FY) s1 = undef then g s1 = undef for all g 2 Y and thereby g s2 = undef forall g 2 Y so that (FY) s2 = undef. Similarly (FY) s2 = undef will imply that(FY) s1 = undef. So
onsider now the
ase where (FY) s1 6= undef as well as(FY) s2 6= undef and let x 2 Var \ OK((FIX H) ps). By Lemma 4.25 we havegraph(FY) = Sf graph g j g 2 Y gand (FY) s i 6= undef therefore shows the existen
e of an element g i in Y su
hthat g i s i 6= undef and (FY) s i = g i s i (for i = 1, 2). Sin
e Y is a
hain eitherg1 v g2 or g2 v g1 so let g be the larger of the two. We then have((FY) s1) x = (g1 s1) x as (FY) s1 = g1 s1= (g s1) x as g1 v g and g1 s1 6= undef= (g s2) x as g s1 � g s2 rel (FIX H) ps= (g2 s2) x as g2 v g and g2 s2 6= undef= ((FY) s2) x as (FY) s2 = g2 s2as required. This �nishes the proof of the theorem. 2It follows from this theorem that the algorithm listed at the end of Se
tion 5.2is indeed
orre
t. The proof of safety of the analysis
an be summarized as follows:Proof Summary for While:Safety of Stati
 Analysis1: De�ne a relation satStm expressing the relationship between the fun
tionsof State ,! State and PState ! PState.2: Show that the relation is preserved by
ertain pairs of auxiliary fun
tionsused in the denotational semanti
s and the stati
 analysis (Lemmas 5.32and 5.33).3: Use stru
tural indu
tion on the statements S to show that the relationholds between the semanti
s and the analysis of S .

160 5 Stati
 Program AnalysisExer
ise 5.34 Extend the proof of the theorem to in
orporate the analysis de-veloped for repeat S until b in Exer
ise 5.25. 2Exer
ise 5.35 When spe
ifying PS in the previous se
tion we reje
ted the pos-sibility of using
ond0P(f , h1, h2) ps = (h1 ps) tPS (h2 ps)rather than
ondP. Formally show that the analysis obtained by using
ond0P ratherthan
ondP
annot be
orre
t in the sense of Theorem 5.31. Hint: Consider thestatement S 12 of Example 5.3. 2Exer
ise 5.36 In the above exer
ise we saw that
ondP
ould not be simpli�edso as to ignore the test for whether the
ondition is dubious or not. Now
onsiderthe following remedy
ond0P(f , h1, h2) ps= 8>>><>>>: (h1 ps) tPS (h2 ps) if f ps = ok((h1 (ps[on-tra
k7!d?℄)) tPS (h2 (ps[on-tra
k7!d?℄)))[on-tra
k7!ok℄if f ps = d?Give an example statement where
ond0P is preferable to
ondP. Does the safetyproof
arry through when
ondP is repla
ed by
ond0P? If not, suggest how toweaken the safety predi
ate su
h that another safety result may be proved. 25.4 Bounded iterationIn Example 5.16 we analysed the fa
torial statement and saw that the �xed point
omputation stabilizes after a �nite number of unfoldings, irrespe
tive of the prop-erty state that is supplied as argument. This is quite unlike what was the
ase forthe denotational semanti
s of Chapter 4, where the number of unfoldings dependedon the state and was unbounded. A similar example was studied in Exer
ise 5.24where we saw that the analysis would terminate upon a statement that neverterminated in the denotational semanti
s of Chapter 4.This is an instan
e of a general phenomenon and we shall show two propositionsabout this. The �rst proposition says that for ea
h statement while b do S thereis a
onstant k su
h that the kth unfolding will indeed be the �xed point. These
ond proposition is
onsiderably harder and says that it is possible to take k tobe (m+1)2 where m is the number of distin
t variables in while b do S .To prepare for the �rst proposition we need an indu
tive de�nition of the setFV(S) of free variables in the statement S :

5.4 Bounded iteration 161FV(x := a) = FV(a) [fxgFV(skip) = ;FV(S 1;S 2) = FV(S 1) [FV(S 2)FV(if b then S 1 else S 2) = FV(b) [FV(S 1) [FV(S 2)FV(while b do S) = FV(b) [FV(S)Our �rst observation is that we
an repeat the development of the previous se
tionsif we restri
t the property states to
onsider only variables that are free in theoverall program. So let X � Var be a �nite set of variables and de�ne PStateXto be PStateX = (X [fon-tra
kg) ! PExer
ise 5.37 (Essential) De�ne AexpX to be the set of arithmeti
 expressionsa ofAexp with FV(a)� X and letBexpX and StmX be de�ned similarly. ModifyTables 5.1 and 5.2 to de�ne analysis fun
tionsPAX : AexpX ! PStateX ! PPBX : BexpX ! PStateX ! PPSX : StmX ! PStateX ! PStateX 2The
onne
tion between the analysis fun
tions of the above exer
ise and thoseof Tables 5.1 and 5.2 should be intuitively
lear. Formally the
onne
tion may beworked out as follows:Exer
ise 5.38 * De�neextendX : PStateX ! PStateby (extendX ps) x = 8<: ps x if x 2 X [fon-tra
kgps on-tra
k otherwiseShow thatPA[[a℄℄ Æ extendX = PAX [[a℄℄PB[[b℄℄ Æ extendX = PBX [[b℄℄PS[[S ℄℄ Æ extendX = extendX Æ PSX [[S ℄℄whenever FV(a) � X , FV(b) � X and FV(S) � X . 2The property states of PStateX are only de�ned on a �nite number of argu-ments be
ause X is a �nite set. This is the key to showing:

162 5 Stati
 Program Analysis
Proposition 5.39 For ea
h statement while b do S of While there exists a
onstant k su
h thatPSX [[while b do S ℄℄ = H k ?where H h =
ondP(PBX [[b℄℄, h Æ PSX [[S ℄℄, id) and FV(while b do S) � X .Note that using the result of Exer
ise 5.38 we
ould dispense with X altogether.Proof: Let m be the
ardinality of X . Then there will be 2m+1 di�erent propertystates in PStateX . This means that PStateX ! PStateX will
ontaink = (2m+1)2m+1di�erent fun
tions. It follows that there
an be at most k di�erent iterands H n ?of H . Sin
e H is monotone Exer
ise 5.18 gives that H k ? must be equal to the�xed point FIX H . This
on
ludes the proof of the proposition. 2Making it pra
ti
alThe
onstant k determined above is a safe upper bound but is rather large evenfor small statements. As an example it says that the 16,777,216th iteration ofthe fun
tional will suÆ
e for the fa
torial statement and this is quite useless forpra
ti
al purposes. In the remainder of this se
tion we shall show that a mu
hsmaller
onstant
an be used:Proposition 5.40 For ea
h statement while b do S of While we havePSX [[while b do S ℄℄ = H k ?where H h =
ondP(PBX [[b℄℄, h Æ PSX [[S ℄℄, id), k = (m+1)2, and m is the
ardi-nality of the set X = FV(while b do S).Note that using the result of Exer
ise 5.38 we
ould dispense with X altogether.For the fa
torial statement this will imply that FIX H = H 9 ? so only nineiterands need to be
onstru
ted. This may be
ompared with the observation madein Example 5.16 that already H 1 ? is the least �xed point.The proof of Proposition 5.40 requires some preliminary results. To motivatethese
onsider why the upper bound determined in Proposition 5.39 is so impre
ise.The reason is that we
onsider all fun
tions in PStateX ! PStateX and do notexploit any spe
ial properties of the fun
tions H n ?, su
h as monotoni
ity or
ontinuity. To obtain a better bound we shall exploit properties of the PSX [[S ℄℄analysis fun
tions. Re
all that a fun
tion

5.4 Bounded iteration 163h: PStateX ! PStateXis stri
t if and only ifh initX = initXwhere initX is the least element of PStateX . It is an additive fun
tion if and onlyif h (ps1 tPS ps2) = (h ps1) tPS (h ps2)holds for all property states ps1 and ps2 of PStateX .Exer
ise 5.41 (Essential) Give a formal de�nition of what it means for a fun
-tion h: PStateX ! Pto be stri
t and additive. Use Exer
ise 5.11 to show that PAX [[a℄℄ and PBX [[b℄℄are stri
t and additive. (We ta
itly assume that FV(a) � X and FV(b) � X .) 2We shall �rst show that the auxiliary fun
tions for
omposition and
onditionalpreserve stri
tness and additivity and next we shall prove that the analysis fun
tionPSX [[S ℄℄ is stri
t and additive for all statements S .Exer
ise 5.42 (Essential) Show that if h1 and h2 are stri
t and additive fun
-tions in PStateX ! PStateX then so is h1 Æ h2. 2Exer
ise 5.43 (Essential) Assume that f inPStateX !P is stri
t and additiveand that h1 and h2 in PStateX ! PStateX are stri
t and additive. Show that
ondP(f , h1, h2) is a stri
t and additive fun
tion. Hint: if f (ps1 tPS ps2) = d?then f ps i = d? for i = 1 or i = 2. 2Lemma 5.44 For all statements S of While, PSX [[S ℄℄ is a stri
t and additivefun
tion whenever FV(S) � X .Proof: We pro
eed by stru
tural indu
tion on S and assume that FV(S) � X .The
ase x := a: We havePSX [[x := a℄℄ initX = initXbe
ause Exer
ise 5.41 gives that PAX [[a℄℄ is stri
t so PAX [[a℄℄ initX = ok. Nextwe show that PSX [[x := a℄℄ is additive:

164 5 Stati
 Program AnalysisPSX [[x := a℄℄(ps1 tPS ps2)= (ps1 tPS ps2)[x 7! PAX [[a℄℄(ps1 tPS ps2)℄= (ps1 tPS ps2)[x 7! PAX [[a℄℄ps1 tP PAX [[a℄℄ps2℄= ps1[x 7!PAX [[a℄℄ps1℄ tPS ps2[x 7!PAX [[a℄℄ps2℄= PSX [[x := a℄℄ps1 tPS PSX [[x := a℄℄ps2where the se
ond equality follows from PAX [[a℄℄ being additive (Exer
ise 5.41).The
ase skip is immediate.The
ase S 1; S 2 follows from Exer
ise 5.42 and the indu
tion hypothesis appliedto S 1 and S 2.The
ase if b then S 1 else S 2 follows from Exer
ise 5.43, the indu
tion hypoth-esis applied to S 1 and S 2 and Exer
ise 5.41.The
ase while b do S : De�neH h =
ondP(PBX [[b℄℄, h Æ PSX [[S ℄℄, id)Our �rst
laim is thatH n ?is stri
t and additive for all n. This is proved by numeri
al indu
tion and thebase
ase, n = 0, is immediate. The indu
tion step follows from the indu
tionhypothesis of the stru
tural indu
tion, the indu
tion hypothesis of the numeri
alindu
tion, Exer
ises 5.42, 5.41 and 5.43 and that id is stri
t and additive. Ourse
ond
laim is thatFIX H = FPS f H n ? j n � 0 gis stri
t and additive. For stri
tness we
al
ulate(FIX H) initX = FPS f (H n ?) initX j n � 0 g= initXwhere the last equality follows from H n ? being stri
t for all n. For additivity we
al
ulate(FIX H)(ps1 tPS ps2)= FPS f (H n ?)(ps1 tPS ps2) j n � 0 g= FPS f (H n ?)ps1 tPS (H n ?)ps2 j n � 0 g= FPS f (H n ?)ps1 j n � 0 g tPS FPS f (H n ?)ps2 j n � 0 g= (FIX H)ps1 tPS (FIX H)ps2

5.4 Bounded iteration 165The se
ond equality uses the additivity of H n ? for all n. This
on
ludes the proofof the lemma. 2Stri
t and additive fun
tions have a number of interesting properties:Exer
ise 5.45 (Essential) Show that if h: PStateX ! PStateX is additivethen h is monotone. 2The next result expresses that when two distin
t analysis fun
tions h1 and h2are stri
t and additive and satis�es h1 v h2 then it will be the property assignedto just one of the \variables" that a

ounts for the di�eren
e between h1 and h2.Lemma 5.46 Consider stri
t and additive fun
tionsh1, h2: PStateX ! PStateXsu
h that h1 v h2 and h1 6= h2. Then there exist \variables" x , y 2 X [fon-tra
kgsu
h that(h1 (initX [y 7!d?℄)) x = ok but(h2 (initX [y 7!d?℄)) x = d?Proof: Sin
e h1 v h2 and h1 6= h2 there exists a property state ps su
h thath1 ps vPS h2 psh1 ps 6= h2 psIt follows that there exists a \variable" x 2 X [fon-tra
kg su
h that(h1 ps) x = ok(h2 ps) x = d?Consider now the set OK(ps). It is �nite be
ause OK(ps) � X [fon-tra
kg. Firstassume that OK(ps) = X [fon-tra
kg. Then ps = initX and sin
e we know thath1 and h2 are stri
t we have h1 initX = initX and h2 initX = initX . Thereforeh1 ps = h2 ps whi
h
ontradi
ts the way ps was
hosen.Therefore OK(ps) is a true subset of X [fon-tra
kg. Now let fy1, � � �, yng bethe \variables" of X [fon-tra
kg that do not o

ur in OK(ps). This means thatps = initX [y1 7!d?℄� � �[yn 7!d?℄whi
h is equivalent tops = initX [y1 7!d?℄ tPS � � � tPS initX [yn 7!d?℄

166 5 Stati
 Program AnalysisSin
e h2 is additive we haveh2 ps = h2(initX [y1 7!d?℄) tPS � � � tPS h2(initX [yn 7!d?℄)We have assumed that (h2 ps) x = d? and now it follows that for some i (1�i�n)h2(initX [y i 7!d?℄) x = d?Sin
e initX [y i 7!d?℄ vPS ps and h1 is monotone (Exer
ise 5.45) we get thath1 (initX [y i 7!d?℄) vPS h1 psand therebyh1 (initX [y i 7!d?℄) x = okSo the lemma follows by taking y to be y i. 2The next step will be to generalize this result to sequen
es of stri
t and additivefun
tions.Corollary 5.47 Consider a sequen
eh0 v h1 v � � � v hnof stri
t and additive fun
tionsh i: PStateX ! PStateXthat are all distin
t, that is h i 6= h j if i 6= j. Then n � (m+1)2 where m is the
ardinality of X .Proof: For ea
h i 2 f0,1,� � �,n�1g the previous lemma applied to h i and h i+1 givesthat there are \variables"x i, y i 2 X [fon-tra
kgsu
h thath i(initX [y i 7!d?℄) x i = okh i+1(initX [y i 7!d?℄) x i = d?First assume that all (x i, y i) are distin
t. Sin
e the
ardinality of X is m there
an be at most (m+1)2 su
h pairs and we have shown n � (m+1)2.Next assume that there exists i < j su
h that (x i, y i) = (x j, y j). We then haveh i+1(initX [y i 7!d?℄) x i = d?

5.4 Bounded iteration 167and h j(initX [y i 7!d?℄) x i = okSin
e i+1 � j we have h i+1 v h j and thereforeh i+1 (initX [y i 7!d?℄) x i vP h j (initX [y i 7!d?℄) x iThis is a
ontradi
tion as it is not the
ase that d? vP ok. Thus it
annot be the
ase that some of the pairs (x i, y i) obtained from Lemma 5.46
oin
ide and wehave proved the
orollary. 2We shall now turn towards the proof of the main result:Proof of Proposition 5.40. Consider the
onstru
t while b do S and let H begiven byH h =
ondP(PBX [[b℄℄, h Æ PSX [[S ℄℄, id)We shall then prove thatPSX [[while b do S ℄℄ = H k ?where k = (m+1)2 and m is the
ardinality of X = FV(while b do S). To do that
onsider the sequen
eH 0 ? v H 1 ? v � � � v H k ? v H k+1 ?It follows from Lemma 5.44 that ea
h H i ? is a stri
t and additive fun
tion. Itnow follows from Corollary 5.47 that not all H i ?, for i � k+1, are distin
t. If i<jsatis�esH i ? = H j ?then we also haveH i ? = H n ? for n�iand in parti
ularH k ? = H k+1 ?Hen
e FIX H = H k ? as desired be
ause of Exer
ise 5.18. 2Exer
ise 5.48 * Show that the bound exhibited in Corollary 5.47 is tight. Thatis des
ribe how to
onstru
t a sequen
eh0 v h1 v � � � v hn

168 5 Stati
 Program Analysisof stri
t and additive fun
tions h i: PStateX ! PStateX su
h that all h i are dis-tin
t and n = (m+1)2 where m is the
ardinality of X . Hint: Begin by
onsideringm = 0, m = 1, m = 2 and then try to generalize. 2To summarize, the quadrati
 upper bound on the required number of iterandsis obtained as follows: Proof Summary for While:Bounding the Number of Iterations in the Stati
 Analysis1: The analysis is modi�ed to use the set PStateX rather than PState(Exer
ise 5.37).2: A proof by stru
tural indu
tion on the statements shows that the analysisfun
tions PSX [[S ℄℄ are stri
t and additive (Lemma 5.44).3: Sequen
es of stri
t and additive fun
tions in PStateX ! PStateX
anhave length at most (m+1)2 where m is the
ardinality of X (Corollary5.47).Using the result of Proposition 5.40 we get that at most 9 iterations are needed to
ompute the �xed point present in the analysis of the fa
torial statement. Sin
e weknow that already the �rst iterand will equal the �xed point one may ask whetherone
an obtain an even better bound on the number of iterations. The followingexer
ise shows that the quadrati
 upper bound
an be repla
ed by a linear upperbound:Exer
ise 5.49 ** Show that for ea
h statement while b do S of While we havePSX [[while b do S ℄℄ = H k ?where H h =
ondP(PBX [[b℄℄, hÆPSX [[S ℄℄, id), k = m+1, and m is the
ardinalityof the set X = FV(while b do S). 2For the fa
torial statement this result will give that at most 3 iterations areneeded to determine the �xed point. The next exer
ise shows that this is almostthe best upper bound we
an hope for:Exer
ise 5.50 * Show that for ea
h m � 1 there is a statement while b do S ofWhile su
h thatPSX [[while b do S ℄℄ 6= H k ?where H h =
ondP(PBX [[b℄℄, hÆPSX [[S ℄℄, id), k = m�1, and m is the
ardinalityof the set X = FV(while b do S). 2

Chapter 6Axiomati
 Program Veri�
ationThe kinds of semanti
s we have seen so far spe
ify the meaning of programs al-though they may also be used to prove that given programs possess
ertain proper-ties. We may distinguish between several
lasses of properties: partial
orre
tnessproperties are properties expressing that if a given program terminates then therewill be a
ertain relationship between the initial and the �nal values of the vari-ables. Thus a partial
orre
tness property of a program need not ensure that itterminates. This is
ontrary to total
orre
tness properties whi
h express that theprogram will terminate and that there will be a
ertain relationship between theinitial and the �nal values of the variables. Thus we havepartial
orre
tness + termination = total
orre
tnessYet another
lass of properties is
on
erned with the resour
es used when exe
utingthe program. An example is the time used to exe
ute the program on a parti
ularma
hine.6.1 Dire
t proofs of program
orre
tnessIn this se
tion we shall give some examples that prove partial
orre
tness of state-ments based dire
tly on the operational and denotational semanti
s. We shallprove that the fa
torial statementy := 1; while :(x=1) do (y := y?x; x := x�1)is partially
orre
t, that is if the statement terminates then the �nal value of ywill be the fa
torial of the initial value of x.Natural semanti
sUsing natural semanti
s the partial
orre
tness of the fa
torial statement
an beformalized as follows: 169

170 6 Axiomati
 Program Veri�
ationFor all states s and s 0, ifhy := 1; while :(x=1) do (y := y?x; x := x�1), si ! s 0then s 0 y = (s x)! and s x > 0This is indeed a partial
orre
tness property be
ause the statement does not ter-minate if the initial value s x of x is non-positive.The proof pro
eeds in three stages:Stage 1: We prove that the body of the while loop satis�es:if hy := y?x; x := x�1, si ! s 00 and s 00 x > 0then (s y) ? (s x)! = (s 00 y) ? (s 00 x)! and s x > 0 (*)Stage 2: We prove that the while loop satis�es:if hwhile :(x=1) do (y := y?x; x := x�1), si ! s 00then (s y) ? (s x)! = s 00 y and s 00 x = 1 and s x > 0 (**)Stage 3: We prove the partial
orre
tness property for the
omplete program:if hy := 1; while :(x=1) do (y := y?x; x := x�1), si ! s 0then s 0 y = (s x)! and s x > 0 (***)In ea
h of the three stages the derivation tree of the given transition is inspe
tedin order to prove the property.In the �rst stage we
onsider the transitionhy := y?x; x := x�1, si ! s 00A

ording to [
ompns℄ there will be transitionshy := y?x, si ! s 0 and hx := x�1, s 0i ! s 00for some s 0. From the axiom [assns℄ we then get that s 0 = s[y7!A[[y?x℄℄s℄ and thats 00 = s 0[x7!A[[x�1℄℄s 0℄. Combining these results we haves 00 = s[y7!(s y)?(s x)℄[x7!(s x)�1℄Assuming that s 00 x > 0 we
an then
al
ulate(s 00 y) ? (s 00 x)! = ((s y) ? (s x)) ? ((s x)�1)! = (s y) ? (s x)!and sin
e s x = (s 00 x) + 1 this shows that (*) does indeed hold.In the se
ond stage we pro
eed by indu
tion on the shape of the derivation treefor hwhile :(x=1) do (y := y?x; x := x�1), si ! s 0

6.1 Dire
t proofs of program
orre
tness 171One of two axioms and rules
ould have been used to
onstru
t this derivation.If [while�ns℄ has been used then s 0 = s and B[[:(x=1)℄℄s = �. This means thats 0 x = 1 and sin
e 1! = 1 we get the required (s y) ? (s x)! = s y and s x > 0.This proves (**).Next assume that [whilettns℄ is used to
onstru
t the derivation. Then it mustbe the
ase that B[[:(x=1)℄℄s = tt andhy := y?x; x := x�1, si ! s 00and hwhile :(x=1) do (y := y?x; x := x�1), s 00i ! s 0for some state s 00. The indu
tion hypothesis applied to the latter derivation givesthat (s 00 y) ? (s 00 x)! = s 0 y and s 0 x = 1 and s 00 x > 0From (*) we get that(s y) ? (s x)! = (s 00 y) ? (s 00 x)! and s x > 0Putting these results together we get(s y) ? (s x)! = s 0 y and s 0 x = 1 and s x > 0This proves (**) and thereby the se
ond stage of the proof is
ompleted.Finally,
onsider the third stage of the proof and the derivationhy := 1; while :(x=1) do (y := y?x; x := x�1), si ! s 0A

ording to [
ompns℄ there will be a state s 00 su
h thathy := 1, si ! s 00and hwhile :(x=1) do (y := y?x; x := x�1), s 00i ! s 0From axiom [assns℄ we see that s 00 = s[y7!1℄ and from (**) we get that s 00 x > 0and therefore s x > 0. Hen
e (s x)! = (s 00 y) ? (s 00 x)! holds and using (**) we get(s x)! = (s 00 y) ? (s 00 x)! = s 0 yas required. This proves the partial
orre
tness of the fa
torial statement.Exer
ise 6.1 Use the natural semanti
s to prove the partial
orre
tness of thestatement

172 6 Axiomati
 Program Veri�
ationz := 0; while y�x do (z := z+1; x := x�y)that is prove that if the statement terminates in s 0 when exe
uted from a state swith s x > 0 and s y > 0, then s 0 z = (s x) div (s y) and s 0 x = (s x) mod (s y)where div is integer division and mod is the modulo operation. 2Exer
ise 6.2 Use the natural semanti
s to prove the following total
orre
tnessproperty for the fa
torial program: for all states sif s x > 0 then there exists a state s 0 su
h thathy := 1; while :(x=1) do (y := y?x; x := x�1), si ! s 0and s 0 y = (s x)! 2Stru
tural operational semanti
sThe partial
orre
tness of the fa
torial statement
an also be established using thestru
tural operational semanti
s. The property is then reformulated as:For all states s and s 0, ifhy := 1; while :(x=1) do (y := y?x; x := x�1), si)� s 0then s 0 y = (s x)! and s x > 0Again it is worthwhile to approa
h the proof in stages:Stage 1: We prove by indu
tion on the length of derivation sequen
es thatif hwhile :(x=1) do (y := y?x; x := x�1), si)k s 0then s 0 y = (s y) ? (s x)! and s 0 x = 1 and s x > 0Stage 2: We prove thatif hy := 1; while :(x=1) do (y := y?x; x := x�1), si)� s 0then s 0 y = (s x)! and s x > 0Exer
ise 6.3 Complete the proof of stages 1 and 2. 2Denotational semanti
sWe shall now use the denotational semanti
s to prove partial
orre
tness propertiesof statements. The idea is to formulate the property as a predi
ate on the

po(State ,! State, v), that is : (State ,! State) ! T

6.1 Dire
t proofs of program
orre
tness 173As an example, the partial
orre
tness of the fa
torial statement will be writtenas fa
(Sds[[y := 1; while :(x=1) do (y := y?x; x := x�1)℄℄) = ttwhere the predi
ate fa
 is de�ned by fa
(g) = ttif and only iffor all states s and s 0, if g s = s 0 then s 0 y = (s x)! and s x > 0A predi
ate : D ! T de�ned on a

po (D ,v) is
alled an admissible predi
ateif and only if we haveif d = tt for all d 2 Y then (FY) = ttfor every
hain Y in D . Thus if holds on all the elements of the
hain then italso holds on the least upper bound of the
hain.Example 6.4 Consider the predi
ate 0fa
 de�ned on State ,! State by 0fa
(g) = ttif and only iffor all states s and s 0, if g s = s 0then s 0 y = (s y) ? (s x)! and s x > 0Then 0fa
 is an admissible predi
ate. To see this assume that Y is a
hain inState ,! State and assume that 0fa
 g = tt for all g 2 Y . We shall then provethat 0fa
(FY) = tt, that is(FY) s = s 0impliess 0 y = (s y) ? (s x)! and s x > 0From Lemma 4.25 we have graph(FY) = Sf graph(g) j g 2 Y g. We have assumedthat (FY) s = s 0 so Y
annot be empty and hs, s 0i 2 graph(g) for some g 2 Y .But thens 0 y = (s y) ? (s x)! and s x > 0as 0fa
 g = tt for all g 2 Y . This proves that 0fa
 is an admissible predi
ate. 2For admissible predi
ates we have the following indu
tion prin
iple
alled �xedpoint indu
tion:

174 6 Axiomati
 Program Veri�
ation
Theorem 6.5 Let (D ,v) be a

po and let f : D ! D be a
ontinuous fun
tionand let be an admissible predi
ate on D . If for all d 2 D d = tt implies (f d) = ttthen (FIX f) = tt.Proof: We shall �rst note that ? = ttholds by admissibility of (applied to the
hain Y = ;). By indu
tion on n we
an then show that (f n ?) = ttusing the assumptions of the theorem. By admissibility of (applied to the
hainY = f f n ? j n � 0 g) we then have (FIX f) = ttThis
ompletes the proof. 2We are now in a position where we
an prove the partial
orre
tness of thefa
torial statement. The �rst observation is thatSds[[y := 1; while :(x=1) do (y := y?x; x := x�1)℄℄s = s 0if and only ifSds[[while :(x=1) do (y := y?x; x := x�1)℄℄(s[y7!1℄) = s 0Thus it is suÆ
ient to prove that 0fa
(Sds[[while :(x=1) do (y := y?x; x := x�1)℄℄) = tt (*)(where 0fa
 is de�ned in Example 6.4) as this will imply that fa
(Sds[[y := 1; while :(x=1) do (y := y?x; x := x�1)℄℄) = ttWe shall now reformulate (*) slightly to bring ourselves in a position where we
an use �xed point indu
tion. Using the de�nition of Sds in Table 4.1 we haveSds[[while :(x=1) do (y := y?x; x := x�1)℄℄ = FIX Fwhere the fun
tional F is de�ned byF g =
ond(B[[:(x=1)℄℄, g Æ Sds[[y := y?x; x := x�1℄℄, id)

6.2 Partial
orre
tness assertions 175Using the semanti
 equations de�ning Sds we
an rewrite this de�nition as(F g) s = 8<: s if s x = 1g(s[y7!(s y)?(s x)℄[x7!(s x)�1℄) otherwiseWe have already seen that F is a
ontinuous fun
tion (for example in the proofof Proposition 4.47) and from Example 6.4 we have that 0fa
 is an admissiblepredi
ate. Thus we see from Theorem 6.5 that (*) follows if we show that 0fa
 g = tt implies 0fa
(F g) = ttTo prove this impli
ation assume that 0fa
 g = tt, that is for all states s and s 0if g s = s 0 then s 0 y = (s y) ? (s x)! and s x > 0We shall prove that 0fa
(F g) = tt, that is for all states s and s 0if (F g) s = s 0 then s 0 y = (s y) ? (s x)! and s x > 0Inspe
ting the de�nition of F we see that there are two
ases. First assume thats x = 1. Then (F g) s = s and
learly s y = (s y) ? (s x)! and s x > 0. Nextassume that s x 6= 1. Then(F g) s = g(s[y7!(s y)?(s x)℄[x7!(s x)�1℄)From the assumptions about g we then get thats 0 y = ((s y)?(s x)) ? ((s x)�1)! and (s x)�1 > 0so that the desired results 0 y = (s y) ? (s x)! and s x > 0follows.Exer
ise 6.6 Repeat Exer
ise 6.1 using the denotational semanti
s. 26.2 Partial
orre
tness assertionsOne may argue that the above proofs are too detailed to be pra
ti
ally useful; thereason is that they are too
losely
onne
ted with the semanti
s of the program-ming language. One may therefore want to
apture the essential properties of thevarious
onstru
ts so that it would be less demanding to
ondu
t proofs aboutgiven programs. Of
ourse the
hoi
e of \essential properties" will determine thesort of properties that we may a

omplish proving. In this se
tion we shall beinterested in partial
orre
tness properties and therefore the \essential properties"of the various
onstru
ts will not in
lude termination.The idea is to spe
ify properties of programs as assertions, or
laims, aboutthem. An assertion is a triple of the form

176 6 Axiomati
 Program Veri�
ationf P g S f Q gwhere S is a statement and P and Q are predi
ates. Here P is
alled the pre
ondi-tion and Q is
alled the post
ondition. Intuitively, the meaning of f P g S f Q gis thatif P holds in the initial state, andif the exe
ution of S terminates when started in that state,then Q will hold in the state in whi
h S haltsNote that for f P g S f Q g to hold we do not require that S halts when startedin states satisfying P | merely that if it does halt then Q holds in the �nal state.Logi
al variablesAs an example we may writef x=n g y := 1; while :(x=1) do (y := x?y; x := x�1) f y=n! ^ n>0 gto express that if the value of x is equal to the value of n before the fa
torialprogram is exe
uted then the value of y will be equal to the fa
torial of the valueof n after the exe
ution of the program has terminated (if indeed it terminates).Here n is a spe
ial variable
alled a logi
al variable and these logi
al variablesmust not appear in any statement
onsidered. The role of these variables is to\remember" the initial values of the program variables. Note that if we repla
ethe post
ondition y=n! ^ n>0 by the new post
ondition y=x! ^ x>0 then theassertion above will express a relationship between the �nal value of y and the�nal value of x and this is not what we want. The use of logi
al variables solvesthe problem be
ause it allows us to refer to initial values of variables.We shall thus distinguish between two kinds of variables:� program variables, and� logi
al variables.The states will determine the values of both kinds of variables and sin
e logi
alvariables do not o

ur in programs their values will always be the same. In
aseof the fa
torial program we know that the value of n is the same in the initialstate and in the �nal state. The pre
ondition x = n expresses that n has the samevalue as x in the initial state. Sin
e the program will not
hange the value of n thepost
ondition y = n! will express that the �nal value of y is equal to the fa
torialof the initial value of x.

6.2 Partial
orre
tness assertions 177The assertion languageThere are two approa
hes
on
erning how to spe
ify the pre
onditions and post-
onditions of the assertions:� the intensional approa
h, versus� the extensional approa
h.In the intensional approa
h the idea is to introdu
e an expli
it language
alled anassertion language and then the
onditions will be formulae of that language. Thisassertion language is in general mu
h more powerful than the boolean expressions,Bexp, introdu
ed in Chapter 1. In fa
t the assertion language has to be verypowerful indeed in order to be able to express all the pre
onditions and post
on-ditions we may be interested in; we shall return to this in the next se
tion. Theapproa
h we shall follow is the extensional approa
h and it is a kind of short
ut.The idea is that the
onditions are predi
ates, that is fun
tions in State ! T.Thus the meaning of f P g S f Q g may be reformulated as saying that if P holdson a state s and if S exe
uted from state s results in the state s 0 then Q holds ons 0. We
an write any predi
ates we like and therefore the expressiveness problemmentioned above does not arise.Ea
h boolean expression b de�nes a predi
ate B[[b℄℄. We shall feel free to letb in
lude logi
al variables as well as program variables so the pre
ondition x = nused above is an example of a boolean expression. To ease the readability, weintrodu
e the following notationP1 ^ P2 for P where P s = (P1 s) and (P2 s)P1 _ P2 for P where P s = (P1 s) or (P2 s):P for P 0 where P 0 s = :(P s)P [x 7!A[[a℄℄℄ for P 0 where P 0 s = P (s[x 7!A[[a℄℄s℄)P1) P2 for 8s 2 State: P1 s implies P2 sWhen it is
onvenient, but not when de�ning formal inferen
e rules, we shallallow to dispense with B[[� � �℄℄ and A[[� � �℄℄ inside square bra
kets as well as withinpre
onditions and post
onditions.Exer
ise 6.7 Show that� B[[b[x 7!a℄℄℄ = B[[b℄℄[x 7!A[[a℄℄℄ for all b and a,� B[[b1 ^ b2℄℄ = B[[b1℄℄ ^ B[[b2℄℄ for all b1 and b2, and� B[[:b℄℄ = :B[[b℄℄ for all b. 2

178 6 Axiomati
 Program Veri�
ation[assp℄ f P [x 7!A[[a℄℄℄ g x := a f P g[skipp℄ f P g skip f P g[
ompp℄ f P g S 1 f Q g, f Q g S 2 f R gf P g S 1; S 2 f R g[ifp℄ f B[[b℄℄ ^ P g S 1 f Q g, f :B[[b℄℄ ^ P g S 2 f Q gf P g if b then S 1 else S 2 f Q g[whilep℄ f B[[b℄℄ ^ P g S f P gf P g while b do S f :B[[b℄℄ ^ P g[
onsp℄ f P 0 g S f Q 0 gf P g S f Q g if P) P 0 and Q 0) QTable 6.1: Axiomati
 system for partial
orre
tnessThe inferen
e systemThe partial
orre
tness assertions will be spe
i�ed by an inferen
e system
onsist-ing of a set of axioms and rules. The formulae of the inferen
e system have theform f P g S f Q gwhere S is a statement in the language While and P and Q are predi
ates. Theaxioms and rules are summarized in Table 6.1 and will be explained below. Theinferen
e system spe
i�es an axiomati
 semanti
s for While.The axiom for assignment statements isf P [x 7!A[[a℄℄℄ g x := a f P gThis axiom assumes that the exe
ution of x := a starts in a state s that satis�esP [x 7!A[[a℄℄℄, that is in a state s where s[x 7!A[[a℄℄s℄ satis�es P . The axiom expressesthat if the exe
ution of x := a terminates (whi
h will always be the
ase) then the�nal state will satisfy P . From the earlier de�nitions of the semanti
s of Whilewe know that the �nal state will be s[x 7!A[[a℄℄s℄ so it is easy to see that the axiomis plausible.For skip the axiom isf P g skip f P gThus if P holds before skip is exe
uted then it also holds afterwards. This is
learly plausible as skip does nothing.

6.2 Partial
orre
tness assertions 179Axioms [assp℄ and [skipp℄ are really axiom s
hemes generating separate axiomsfor ea
h
hoi
e of predi
ate P . The meaning of the remaining
onstru
ts are givenby rules of inferen
e rather than axiom s
hemes. Ea
h su
h rule spe
i�es a wayof dedu
ing an assertion about a
ompound
onstru
t from assertions about its
onstituents. For
omposition the rule is:f P g S 1 f Q g, f Q g S 2 f R gf P g S 1; S 2 f R gThis says that if P holds prior to the exe
ution of S 1; S 2 and if the exe
utionterminates then we
an
on
lude that R holds in the �nal state provided thatthere is a predi
ate Q for whi
h we
an dedu
e that� if S 1 is exe
uted from a state where P holds and if it terminates then Q willhold for the �nal state, and that� if S 2 is exe
uted from a state where Q holds and if it terminates then R willhold for the �nal state.The rule for the
onditional isf B[[b℄℄ ^ P g S 1 f Q g, f :B[[b℄℄ ^ P g S 2 f Q gf P g if b then S 1 else S 2 f Q gThe rule says that if if b then S 1 else S 2 is exe
uted from a state where P holdsand if it terminates, then Q will hold for the �nal state provided that we
andedu
e that� if S 1 is exe
uted from a state where P and b hold and if it terminates thenQ holds on the �nal state, and that� if S 2 is exe
uted from a state where P and :b hold and if it terminates thenQ holds on the �nal state.The rule for the iterative statement isf B[[b℄℄ ^ P g S f P gf P g while b do S f :B[[b℄℄ ^ P gThe predi
ate P is
alled an invariant for the while-loop and the idea is that itwill hold before and after ea
h exe
ution of the body S of the loop. The rule saysthat if additionally b is true before ea
h exe
ution of the body of the loop then :bwill be true when the exe
ution of the while-loop has terminated.To
omplete the inferen
e system we need one more rule of inferen
ef P 0 g S f Q 0 gf P g S f Q g if P) P 0 and Q 0) Q

180 6 Axiomati
 Program Veri�
ationThis rule says that we
an strengthen the pre
ondition P 0 and weaken the post-
ondition Q 0. This rule is often
alled the rule of
onsequen
e.Note that Table 6.1 spe
i�es a set of axioms and rules just as the tables de�ningthe operational semanti
s in Chapter 2. The analogue of a derivation tree will nowbe
alled an inferen
e tree sin
e it shows how to infer that a
ertain property holds.Thus the leaves of an inferen
e tree will be instan
es of axioms and the internalnodes will
orrespond to instan
es of rules. We shall say that the inferen
e treegives a proof of the property expressed by its root. We shall write`p f P g S f Q gfor the provability of the assertion f P g S f Q g. An inferen
e tree is
alledsimple if it is an instan
e of one of the axioms and otherwise it is
alled
omposite.Example 6.8 Consider the statement while true do skip. From [skipp℄ we have(omitting the B[[� � �℄℄)`p f true g skip f true gSin
e (true ^ true)) true we
an apply the rule of
onsequen
e [
onsp℄ and get`p f true ^ true g skip f true gHen
e by the rule [whilep℄ we get`p f true g while true do skip f :true ^ true gWe have that :true ^ true) true so by applying [
onsp℄ on
e more we get`p f true g while true do skip f true gThe inferen
e above
an be summarized by the following inferen
e tree:f true g skip f true gf true ^ true g skip f true gf true g while true do skip f :true ^ true gf true g while true do skip f true gIt is now easy to see that we
annot
laim that f P g S f Q g means that Swill terminate in a state satisfying Q when it is started in a state satisfying P .For the assertion f true g while true do skip f true g this reading would meanthat the program would always terminate and
learly this is not the
ase. 2

6.2 Partial
orre
tness assertions 181Example 6.9 To illustrate the use of the axiomati
 semanti
s for veri�
ation weshall prove the assertionf x = n gy := 1; while :(x=1) do (y := y?x; x := x�1)f y = n! ^ n > 0 gwhere, for the sake of readability, we write y = n! ^ n > 0 for the predi
ateP where P s = (s y = (s n)! ^ s n > 0)The inferen
e of this assertion pro
eeds in a number of stages. First we de�ne thepredi
ate INV that is going to be the invariant of the while-loop:INV s = (s x > 0 implies ((s y) ? (s x)! = (s n)! and s n � s x))We shall then
onsider the body of the loop. Using [assp℄ we get`p f INV [x7!x�1℄ g x := x�1 f INV gSimilarly, we get`p f (INV [x7!x�1℄)[y7!y?x℄ g y := y ? x f INV [x7!x�1℄ gWe
an now apply the rule [
ompp℄ to the two assertions above and get`p f (INV [x7!x�1℄)[y7!y?x℄ g y := y ? x; x := x�1 f INV gIt is easy to verify that(:(x=1) ^ INV)) (INV [x7!x�1℄)[y7!y?x℄so using the rule [
onsp℄ we get`p f :(x = 1) ^ INV g y := y ? x; x := x�1 f INV gWe are now in a position to use the rule [whilep℄ and get`p f INV gwhile :(x=1) do (y := y?x; x := x�1)f:(:(x = 1)) ^ INV gClearly we have:(:(x = 1)) ^ INV) y = n! ^ n > 0

182 6 Axiomati
 Program Veri�
ationso applying rule [
onsp℄ we get`p f INV g while :(x=1) do (y := y?x; x := x�1) f y = n! ^ n > 0 gWe shall now apply the axiom [assp℄ to the statement y := 1 and get`p f INV [y7!1℄ g y := 1 f INV gUsing thatx = n) INV [y7!1℄together with [
onsp℄ we get`p f x = n g y := 1 f INV gFinally, we
an use the rule [
ompp℄ and get`p f x = n gy := 1; while :(x=1) do (y := y?x; x := x�1)f y = n! ^ n > 0 gas required. 2Exer
ise 6.10 Spe
ify a formula expressing the partial
orre
tness property ofthe program of Exer
ise 6.1. Constru
t an inferen
e tree giving a proof of thisproperty using the inferen
e system of Table 6.1. 2Exer
ise 6.11 Suggest an inferen
e rule for repeat S until b. You are notallowed to rely on the existen
e of a while-
onstru
t in the language. 2Exer
ise 6.12 Suggest an inferen
e rule for for x := a1 to a2 do S . You are notallowed to rely on the existen
e of a while-
onstru
t in the language. 2Properties of the semanti
sIn the operational and denotational semanti
s we de�ned a notion of two programsbeing semanti
ally equivalent. We
an de�ne a similar notion for the axiomati
semanti
s: Two programs S 1 and S 2 are provably equivalent a

ording to theaxiomati
 semanti
s of Table 6.1 if for all pre
onditions P and post
onditions Qwe havèp f P g S 1 f Q g if and only if `p f P g S 2 f Q gExer
ise 6.13 Show that the following statements of While are provably equiv-alent in the above sense:

6.3 Soundness and
ompleteness 183� S ; skip and S� S 1; (S 2; S 3) and (S 1; S 2); S 3 2Proofs of properties of the axiomati
 semanti
s will often pro
eed by indu
tionon the shape of the inferen
e tree:Indu
tion on the Shape of Inferen
e Trees1: Prove that the property holds for all the simple inferen
e trees by showingthat it holds for the axioms of the inferen
e system.2: Prove that the property holds for all
omposite inferen
e trees: For ea
hrule assume that the property holds for its premises (this is
alled theindu
tion hypothesis) and that the
onditions of the rule are satis�ed andthen prove that it also holds for the
on
lusion of the rule.Exer
ise 6.14 ** Using the inferen
e rule for repeat S until b given in Exer
ise6.11 show that repeat S until b is provably equivalent to S ; while :b do S . Hint:it is not too hard to show that what is provable about repeat S until b is alsoprovable about S ; while :b do S . 2Exer
ise 6.15 Show that `p f P g S f true g for all statements S and propertiesP . 26.3 Soundness and
ompletenessWe shall now address the relationship between the inferen
e system of Table 6.1and the operational and denotational semanti
s of the previous
hapters. We shallprove that� the inferen
e system is sound: if some partial
orre
tness property
an beproved using the inferen
e system then it does indeed hold a

ording to thesemanti
s, and� the inferen
e system is
omplete: if some partial
orre
tness property doeshold a

ording to the semanti
s then we
an also �nd a proof for it using theinferen
e system.The
ompleteness result
an only be proved be
ause we use the extensional ap-proa
h where pre
onditions and post
onditions are arbitrary predi
ates. In theintensional approa
h we only have a weaker result; we shall return to this later inthis se
tion.

184 6 Axiomati
 Program Veri�
ationAs the operational and denotational semanti
s are equivalent we only need to
onsider one of them here and we shall
hoose the natural semanti
s. The partial
orre
tness assertion f P g S f Q g is said to be valid if and only iffor all states s, if P s = tt and hS ,si ! s 0 for some s 0 then Q s 0 = ttand we shall write this asj=p f P g S f Q gThe soundness property is then expressed by`p f P g S f Q g implies j=p f P g S f Q gand the
ompleteness property is expressed byj=p f P g S f Q g implies `p f P g S f Q gWe haveTheorem 6.16 For all partial
orre
tness assertions f P g S f Q g we havej=p f P g S f Q g if and only if `p f P g S f Q gIt is
ustomary to prove the soundness and
ompleteness results separately.SoundnessWe shall �rst prove:Lemma 6.17 The inferen
e system of Table 6.1 is sound, that is for every partial
orre
tness formula f P g S f Q g we have`p f P g S f Q g implies j=p f P g S f Q gProof: The proof is by indu
tion on the shape of the inferen
e tree used to infer`p f P g S f Q g. This amounts to nothing but a formalization of the intuitionswe gave when introdu
ing the axioms and rules.The
ase [assp℄: We shall prove that the axiom is valid, so suppose thathx := a, si ! s 0

6.3 Soundness and
ompleteness 185and (P [x 7!A[[a℄℄℄) s = tt. We shall then prove that P s 0 = tt. From [assns℄ we getthat s 0 = s[x 7!A[[a℄℄s℄ and from (P [x 7!A[[a℄℄℄) s = tt we get that P (s[x 7!A[[a℄℄s℄)= tt. Thus P s 0 = tt as was to be shown.The
ase [skipp℄: This
ase is immediate using the
lause [skipns℄.The
ase [
ompp℄: We assume thatj=p f P g S 1 f Q g and j=p f Q g S 2 f R gand we have to prove that j=p f P g S 1; S 2 f R g. So
onsider arbitrary states sand s 00 su
h that P s = tt andhS 1;S 2, si ! s 00From [
ompns℄ we get that there is a state s 0 su
h thathS 1, si ! s 0 and hS 2, s 0i ! s 00From hS 1, si ! s 0, P s = tt and j=p f P g S 1 f Q g we get Q s 0 = tt. FromhS 2, s 0i ! s 00, Q s 0 = tt and j=p f Q g S 2 f R g it follows that R s 00 = tt as wasto be shown.The
ase [ifp℄: Assume thatj=p f B[[b℄℄ ^ P g S 1 f Q g and j=p f :B[[b℄℄ ^ P g S 2 f Q gTo prove j=p f P g if b then S 1 else S 2 f Q g
onsider arbitrary states s and s 0su
h that P s = tt andhif b then S 1 else S 2, si ! s 0There are two
ases. If B[[b℄℄s = tt then we get (B[[b℄℄ ^ P) s = tt and from [ifns℄we havehS 1, si ! s 0From the �rst assumption we therefore get Q s 0 = tt. If B[[b℄℄s = � the resultfollows in a similar way from the se
ond assumption.The
ase [whilep℄: Assume thatj=p f B[[b℄℄ ^ P g S f P gTo prove j=p f P g while b do S f :B[[b℄℄ ^ P g
onsider arbitrary states s ands 00 su
h that P s = tt andhwhile b do S , si ! s 00

186 6 Axiomati
 Program Veri�
ationand we shall show that (:B[[b℄℄^P) s 00 = tt. We shall now pro
eed by indu
tion onthe shape of the derivation tree in the natural semanti
s. One of two
ases apply.If B[[b℄℄s = � then s 00 = s a

ording to [while�ns℄ and
learly (:B[[b℄℄ ^ P) s 00 = ttas required. Next
onsider the
ase where B[[b℄℄s = tt andhS , si ! s 0 and hwhile b do S , s 0i ! s 00for some state s 0. Thus (B[[b℄℄ ^ P) s = tt and we
an then apply the assump-tion j=p f B[[b℄℄ ^ P g S f P g and get that P s 0 = tt. The indu
tion hypothe-sis
an now be applied to the derivation hwhile b do S , s 0i ! s 00 and gives that(:B[[b℄℄ ^ P) s 00 = tt. This
ompletes the proof of this
ase.The
ase [
onsp℄: Suppose thatj=p f P 0 g S f Q 0 g and P) P 0 and Q 0) QTo prove j=p f P g S f Q g
onsider states s and s 0 su
h that P s = tt andhS , si ! s 0Sin
e P s = tt and P) P 0 we also have P 0 s = tt and the assumption then givesus that Q 0 s 0 = tt. From Q 0) Q we therefore get Q s 0 = tt as required. 2Exer
ise 6.18 Show that the inferen
e rule for repeat S until b suggested inExer
ise 6.11 preserves validity. Argue that this means that the entire proof system
onsisting of the axioms and rules of Table 6.1 together with the rule of Exer
ise6.11 is sound. 2Exer
ise 6.19 De�ne j=0 f P g S f Q g to mean thatfor all states s su
h that P s = tt there exists a state s 0 su
h thatQ s 0 = tt and hS , si ! s 0Show that it is not the
ase that `p f P g S f Q g implies j=0 f P g S f Q g and
on
lude that the proof system of Table 6.1
annot be sound with respe
t to thisde�nition of validity. 2Completeness (in the extensional approa
h)Before turning to the proof of the
ompleteness result we shall
onsider a spe
ialpredi
ate wlp(S , Q) de�ned for ea
h statement S and predi
ate Q :wlp(S , Q) s = ttif and only if for all states s 0,

6.3 Soundness and
ompleteness 187if hS , si ! s 0 then Q s 0 = ttThe predi
ate is
alled the weakest liberal pre
ondition for Q and it satis�es:Fa
t 6.20 For every statement S and predi
ate Q we have� j=p f wlp(S , Q) g S f Q g (*)� if j=p f P g S f Q g then P) wlp(S , Q) (**)meaning that wlp(S , Q) is the weakest possible pre
ondition for S and Q .Proof: To verify that (*) holds let s and s 0 be states su
h that hS , si ! s 0and wlp(S , Q) s = tt. From the de�nition of wlp(S , Q) we get that Q s 0 = ttas required. To verify that (**) holds assume that j=p f P g S f Q g and letP s = tt. If hS , si ! s 0 then Q s 0 = tt (be
ause j=p f P g S f Q g) so
learlywlp(S ,Q) s = tt. 2Exer
ise 6.21 Prove that the predi
ate INV of Example 6.9 satis�esINV = wlp(while :(x=1) do (y := y?x; x := x�1), y = n! ^ n > 0) 2Exer
ise 6.22 Another interesting predi
ate
alled the strongest post
onditionfor S and P
an be de�ned bysp(P , S) s 0 = ttif and only ifthere exists s su
h that hS , si ! s 0 and P s = ttProve that� j=p f P g S f sp(P , S) g� if j=p f P g S f Q g then sp(P , S)) QThus sp(P , S) is the strongest possible post
ondition for P and S . 2Lemma 6.23 The inferen
e system of Table 6.1 is
omplete, that is for everypartial
orre
tness formula f P g S f Q g we havej=p f P g S f Q g implies `p f P g S f Q g

188 6 Axiomati
 Program Veri�
ationProof: The
ompleteness result follows if we
an infer`p f wlp(S , Q) g S f Q g (*)for all statements S and predi
ates Q . To see this suppose thatj=p f P g S f Q gThen Fa
t 6.20 gives thatP) wlp(S ,Q)so that (*) and [
onsp℄ give`p f P g S f Q gas required.To prove (*) we pro
eed by stru
tural indu
tion on the statement S .The
ase x := a: Based on the natural semanti
s it is easy to verify thatwlp(x := a, Q) = Q [x 7!A[[a℄℄℄so the result follows dire
tly from [assp℄.The
ase skip: Sin
e wlp(skip, Q) = Q the result follows from [skipp℄.The
ase S 1;S 2: The indu
tion hypothesis applied to S 1 and S 2 gives`p f wlp(S 2, Q) g S 2 f Q gand `p f wlp(S 1, wlp(S 2, Q)) g S 1 f wlp(S 2, Q) gso that [
ompp℄ gives`p f wlp(S 1, wlp(S 2, Q)) g S 1;S 2 f Q gWe shall now prove thatwlp(S 1;S 2, Q)) wlp(S 1, wlp(S 2, Q))as then [
onsp℄ will give the required proof in the inferen
e system. So assume thatwlp(S 1;S 2, Q) s = tt and we shall show that wlp(S 1, wlp(S 2, Q)) s = tt. This isobvious unless there is a state s 0 su
h that hS 1, si ! s 0 and then we must provethat wlp(S 2, Q) s 0 = tt. However, this is obvious too unless there is a state s 00su
h that hS 2, s 0i ! s 00 and then we must prove that Q s 00 = tt. But by [
ompns℄we have hS 1;S 2, si ! s 00 so that Q s 00 = tt follows from wlp(S 1;S 2, Q) s = tt.The
ase if b then S 1 else S 2: The indu
tion hypothesis applied to S 1 and S 2gives

6.3 Soundness and
ompleteness 189`p f wlp(S 1, Q) g S 1 f Q g and `p f wlp(S 2, Q) g S 2 f Q gDe�ne the predi
ate P byP = (B[[b℄℄ ^ wlp(S 1, Q)) _ (:B[[b℄℄ ^ wlp(S 2, Q))Then we have(B[[b℄℄ ^ P)) wlp(S 1, Q) and (:B[[b℄℄ ^ P)) wlp(S 2, Q)so [
onsp℄
an be applied twi
e and gives`p f B[[b℄℄ ^ P g S 1 f Q g and `p f :B[[b℄℄ ^ P g S 2 f Q gUsing [ifp℄ we therefore get`p f P g if b then S 1 else S 2 f Q gTo see that this is the desired result it suÆ
es to show thatwlp(if b then S 1 else S 2, Q)) Pand this is straightforward by
ases on the value of b.The
ase while b do S : De�ne the predi
ate P byP = wlp(while b do S , Q)We �rst show that(:B[[b℄℄ ^ P)) Q (**)(B[[b℄℄ ^ P)) wlp(S ,P) (***)To verify (**) let s be su
h that (:B[[b℄℄ ^ P) s = tt. Then it must be the
asethat hwhile b do S , si ! s so we have Q s = tt. To verify (***) let s be su
hthat (B[[b℄℄ ^ P) s = tt and we shall show that wlp(S ,P) s = tt. This is obviousunless there is a state s 0 su
h that hS , si ! s 0 in whi
h
ase we shall prove thatP s 0 = tt. We have two
ases. First we assume that hwhile b do S , s 0i ! s 00 forsome s 00. Then [whilettns℄ gives us that hwhile b do S , si ! s 00 and sin
e P s =tt we get that Q s 00 = tt using Fa
t 6.20. But this means that P s 0 = tt as wasrequired. In the se
ond
ase we assume that hwhile b do S , s 0i ! s 00 does nothold for any state s 00. But this means that P s 0 = tt holds va
uously and we have�nished the proof of (***).The indu
tion hypothesis applied to the body S of the while-loop gives`p f wlp(S ,P) g S f P gand using (***) together with [
onsp℄ we get

190 6 Axiomati
 Program Veri�
ation`p f B[[b℄℄ ^ P g S f P gWe
an now apply the rule [whilep℄ and get`p f P g while b do S f :B[[b℄℄ ^ P gFinally, we use (**) together with [
onsp℄ and get`p f P g while b do S f Q gas required. 2Exer
ise 6.24 Prove that the inferen
e system for the while-language extendedwith repeat S until b as in Exer
ise 6.11 is
omplete. (If not you should improveyour rule for repeat S until b.) 2Exer
ise 6.25 * Prove the
ompleteness of the inferen
e system of Table 6.1using the strongest post
onditions of Exer
ise 6.22 rather than the weakest liberalpre
onditions as used in the proof of Lemma 6.23. 2Exer
ise 6.26 De�ne a notion of validity based on the denotational semanti
sof Chapter 4 and prove the soundness of the inferen
e system of Table 6.1 usingthis de�nition, that is without using the equivalen
e between the denotationalsemanti
s and the operational semanti
s. 2Exer
ise 6.27 Use the de�nition of validity of Exer
ise 6.26 and prove the
om-pleteness of the inferen
e system of Table 6.1. 2Expressiveness problems (in the intensional approa
h)So far we have only
onsidered the extensional approa
h where the pre
onditionsand post
onditions of the formulae are predi
ates. In the intensional approa
h theyare formulae of some assertion language L. The axioms and rules of the inferen
esystem will be as in Table 6.1, the only di�eren
e being that the pre
onditionsand post
onditions are formulae of L and that operations su
h as P [x 7!A[[a℄℄℄,P1 ^ P2 and P1) P2 are operations on formulae of L.It will be natural to let L in
lude the boolean expressions of While. Thesoundness proof of Lemma 6.17 then
arries dire
tly over to the intensional ap-proa
h. Unfortunately, this is not the
ase for the
ompleteness proof of Lemma6.23. The reason is that the predi
ates wlp(S , Q) used as pre
onditions now haveto be represented as formulae of L and that this may not be possible.To illustrate the problems let S be a statement, for example a universal programin the sense of re
ursion theory, that has an unde
idable Halting problem. Further,suppose that L only
ontains the boolean expressions of While. Finally, assumethat there is a formula bS of L su
h that for all states s

6.4 Extensions of the axiomati
 system 191B[[bS℄℄ s = tt if and only if wlp(S , false) s = ttThen also :bS is a formula of L. We haveB[[bS℄℄ s = tt if and only if the
omputation of S on s loopsand hen
eB[[:bS℄℄ s = tt if and only if the
omputation of S on s terminatesWe now have a
ontradi
tion: the assumptions about S ensure that B[[:bS℄℄ mustbe an unde
idable fun
tion; on the other hand Table 1.2 suggests an obviousalgorithm for evaluating B[[:bS℄℄. Hen
e our assumption about the existen
e of bSmust be mistaken. Consequently we
annot mimi
 the proof of Lemma 6.23.The obvious remedy is to extend L to be a mu
h more powerful language thatallows quanti�
ation as well. A
entral
on
ept is that L must be expressive withrespe
t toWhile and its semanti
s, and one then shows that Table 6.1 is relatively
omplete (in the sense of Cook). It is beyond the s
ope of this book to go deeperinto these matters but we provide referen
es in Chapter 7.6.4 Extensions of the axiomati
 systemIn this se
tion we shall
onsider two extensions of the inferen
e system for par-tial
orre
tness assertions. The �rst extension shows how the approa
h
an bemodi�ed to prove total
orre
tness assertions thereby allowing us to reason abouttermination properties. In the se
ond extension we
onsider how to extend theinferen
e systems to more language
onstru
ts, in parti
ular re
ursive pro
edures.Total
orre
tness assertionsWe shall now
onsider formulae of the formf P g S f + Q gThe idea is thatif the pre
ondition P is ful�lledthen S is guaranteed to terminate (as re
orded by the symbol +)and the �nal state will satisfy the post
ondition Q .This is formalized by de�ning validity of f P g S f + Q g byj=t f P g S f + Q g

192 6 Axiomati
 Program Veri�
ation[asst℄ f P [x 7!A[[a℄℄℄ g x := a f + P g[skipt℄ f P g skip f + P g[
ompt℄ f P g S 1 f + Q g, f Q g S 2 f + R gf P g S 1; S 2 f + R g[ift℄ f B[[b℄℄ ^ P g S 1 f + Q g, f :B[[b℄℄ ^ P g S 2 f + Q gf P g if b then S 1 else S 2 f + Q g[whilet℄ f P(z+1) g S f + P(z) gf 9z.P(z) g while b do S f + P(0) gwhere P(z+1)) B[[b℄℄, P(0)) :B[[b℄℄and z ranges over natural numbers (that is z�0)[
onst℄ f P 0 g S f + Q 0 gf P g S f + Q g where P) P 0 and Q 0) QTable 6.2: Axiomati
 system for total
orre
tnessif and only iffor all states s, if P s = tt then there exists s 0 su
h thatQ s 0 = tt and hS , si ! s 0The inferen
e system for total
orre
tness assertions is very similar to that forpartial
orre
tness assertions, the only di�eren
e being that the rule for the while-
onstru
t has
hanged. The
omplete set of axioms and rules is given in Table 6.2.We shall write`t f P g S f + Q gif there exists an inferen
e tree with the formula f P g S f + Q g as root, that isif the formula is provably in the inferen
e system.In the rule [whilet℄ we use a parameterized family P(z) of predi
ates for theinvariant. The idea is that z is the number of unfoldings of the while-loop that willbe ne
essary. So if the while-loop does not have to be unfolded at all then P(0)holds and it must imply that b is false. If the while-loop has to be unfolded z+1times then P(z+1) holds and b must hold before the body of the loop is exe
uted;then P(z) will hold afterwards so that we have de
reased the total number oftimes the loop remains to be unfolded. The pre
ondition of the
on
lusion of therule expresses that there exists a bound on the number of times the loop has to beunfolded and the post
ondition expresses that when the while-loop has terminatedthen no more unfoldings are ne
essary.

6.4 Extensions of the axiomati
 system 193Example 6.28 The total
orre
tness of the fa
torial statement
an be expressedby the following assertion:f x > 0 ^ x = n gy := 1; while :(x=1) do (y := y?x; x := x�1)f + y = n! gwhere y = n! is an abbreviation for the predi
ateP where P s = (s y = (s n)!)In addition to expressing that the �nal value of y is the fa
torial of the initialvalue of x the assertion also expresses that the program does indeed terminate onall states satisfying the pre
ondition. The inferen
e of this assertion pro
eeds ina number of stages. First we de�ne the predi
ate INV (z) that is going to be theinvariant of the while-loopINV (z) s = (s x > 0 and (s y) ? (s x)! = (s n)! and s x = z + 1)We shall �rst
onsider the body of the loop. Using [asst℄ we get`t f INV (z)[x7!x�1℄ g x := x�1 f + INV (z) gSimilarly, we get`t f (INV (z)[x7!x�1℄)[y7!y?x℄ g y := y ? x f + INV (z)[x7!x�1℄ gWe
an now apply the rule [
ompt℄ to the two assertions above and get`t f (INV (z)[x7!x�1℄)[y7!y?x℄ g y := y ? x; x := x�1 f + INV (z) gIt is easy to verify thatINV (z+1)) (INV (z)[x7!x�1℄)[y7!y?x℄so using the rule [
onst℄ we get`t f INV (z+1) g y := y ? x; x := x�1 f + INV (z) gIt is straightforward to verify thatINV (0)) :(:(x=1)), andINV (z+1)) :(x=1)Therefore we
an use the rule [whilet℄ and get`t f 9z.INV (z) g while :(x=1) do (y := y?x; x := x�1) f + INV (0) gWe shall now apply the axiom [asst℄ to the statement y := 1 and get

194 6 Axiomati
 Program Veri�
ation`t f (9z.INV (z))[y7!1℄ g y := 1 f + 9z.INV (z) gso using [
ompt℄ we get`t f (9z.INV (z))[y7!1℄ gy := 1; while :(x=1) do (y := y?x; x := x�1)f + INV (0) gClearly we havex > 0 ^ x = n) (9z.INV (z))[y7!1℄, andINV (0)) y = n!so applying rule [
onst℄ we get`t f x > 0 ^ x = n gy := 1; while :(x=1) do (y := y?x; x := x�1)f + y = n! gas required. 2Exer
ise 6.29 Suggest a total
orre
tness inferen
e rule for repeat S until b.You are not allowed to rely on the existen
e of a while-
onstru
t in the program-ming language. 2Lemma 6.30 The total
orre
tness system of Table 6.2 is sound, that is for everytotal
orre
tness formula f P g S f + Q g we have`t f P g S f + Q g implies j=t f P g S f + Q gProof: The proof pro
eeds by indu
tion on the shape of the inferen
e tree just asin the proof of Lemma 6.17.The
ase [asst℄: We shall prove that the axiom is valid, so assume that s is su
hthat (P [x 7!A[[a℄℄℄) s = tt and let s 0 = s[x 7!A[[a℄℄s℄. Then [assns℄ giveshx := a, si ! s 0and from (P [x 7!A[[a℄℄℄) s = tt we get P s 0 = tt as was to be shown.The
ase [skipt℄: This
ase is immediate.The
ase [
ompt℄: We assume thatj=t f P g S 1 f + Q g, and (*)j=t f Q g S 2 f + R g (**)and we have to prove that j=t f P g S 1; S 2 f + R g. So let s be su
h that P s = tt.From (*) we get that there exists a state s 0 su
h that Q s 0 = tt and

6.4 Extensions of the axiomati
 system 195hS 1, si ! s 0Sin
e Q s 0 = tt we get from (**) that there exists a state s 00 su
h that R s 00 = ttand hS 2, s 0i ! s 00Using [
ompns℄ we therefore gethS 1; S 2, si ! s 00and sin
e R s 00 = tt we have �nished this
ase.The
ase [ift℄: Assume thatj=t f B[[b℄℄ ^ P g S 1 f + Q g, and (*)j=t f :B[[b℄℄ ^ P g S 2 f + Q gTo prove j=t f P g if b then S 1 else S 2 f + Q g
onsider a state s su
h thatP s = tt. We have two
ases. If B[[b℄℄s = tt then (B[[b℄℄ ^ P) s = tt and from (*)we get that there is a state s 0 su
h that Q s 0 = tt andhS 1, si ! s 0From [ifns℄ we then gethif b then S 1 else S 2, si ! s 0as was to be proved. If B[[b℄℄s = � the result follows in a similar way from these
ond assumption.The
ase [whilet℄: Assume thatj=t f P(z+1) g S f + P(z) g, (*)P(z+1)) B[[b℄℄, andP(0)) :B[[b℄℄To prove j=t f 9z.P(z) g while b do S f + P(0) g it is suÆ
ient to prove that forall natural numbers zif P(z) s = tt then there exists a state s 0 su
h thatP(0) s 0 = tt and hwhile b do S , si ! s 0 (**)So
onsider a state s su
h that P(z) s = tt. The proof is now by numeri
alindu
tion on z.First assume that z = 0. The assumption P(0)) :B[[b℄℄ gives that B[[b℄℄s =� and from [while�ns℄ we gethwhile b do S , si ! s

196 6 Axiomati
 Program Veri�
ationSin
e P(0) s = tt this proves the base
ase.For the indu
tion step assume that (**) holds for all states satisfying P(z) andthat P(z+1) s = tt. From (*) we get that there is a state s 0 su
h that P(z) s 0 =tt andhS , si ! s 0The numeri
al indu
tion hypothesis applied to s 0 gives that there is some state s 00su
h that P(0) s 00 = tt andhwhile b do S , s 0i ! s 00Furthermore, the assumption P(z+1)) B[[b℄℄ gives B[[b℄℄s = tt. We
an thereforeapply [whilettns℄ and get thathwhile b do S , si ! s 00Sin
e P(0) s 00 = tt this
ompletes the proof of (**).The
ase [
onst℄: Suppose thatj=t f P 0 g S f + Q 0 g,P) P 0, andQ 0) QTo prove j=t f P g S f + Q g
onsider a state s su
h that P s = tt. Then P 0 s =tt and there is a state s 0 su
h that Q 0 s 0 = tt andhS , si ! s 0However, we also have that Q s 0 = tt and this proves the result. 2Exer
ise 6.31 Show that the inferen
e rule for repeat S until b suggested inExer
ise 6.29 preserves validity. Argue that this means that the entire proof system
onsisting of the axioms and rules of Table 6.2 together with the rule of Exer
ise6.29 is sound. 2Exer
ise 6.32 * Prove that the inferen
e system of Table 6.2 is
omplete, that isj=t f P g S f + Q g implies `t f P g S f + Q g 2Exer
ise 6.33 * Prove thatif `t f P g S f + Q g then `p f P g S f Q gDoes the
onverse result hold? 2

6.4 Extensions of the axiomati
 system 197Extensions of WhileWe
on
lude by
onsidering an extension of While with non-determinism and(parameterless) pro
edures. The syntax of the extended language is given byS ::= x := a j skip j S 1 ; S 2 j if b then S 1 else S 2j while b do S j S 1 or S 2j begin pro
 p is S 1; S 2 end j
all pNote that in begin pro
 p is S 1; S 2 end the body of p is S 1 and the remainderof the program is S 2.Non-determinismIt is straightforward to handle non-determinism (in the sense of Se
tion 2.4) inthe axiomati
 approa
h. The idea is that an assertion holds for S 1 or S 2 if thesimilar assertion holds for S 1 as well as for S 2. The motivation for this is thatwhen reasoning about the statement we have no way of in
uen
ing whether S 1 orS 2 is
hosen. For partial
orre
tness we thus extend Table 6.1 with the rule[orp℄ f P g S 1 f Q g, f P g S 2 f Q gf P g S 1 or S 2 f Q gFor total
orre
tness we extend Table 6.2 with the rule[ort℄ f P g S 1 f + Q g, f P g S 2 f + Q gf P g S 1 or S 2 f + Q gWhen dealing with soundness and
ompleteness of these rules one must be
arefulin using a semanti
s that models \non-deterministi

hoi
e" in the proper manner.We saw in Se
tion 2.4 that this is the
ase for stru
tural operational semanti
s butnot for natural semanti
s. With respe
t to the stru
tural operational semanti
s one
an show that the above rules are sound and that the resulting inferen
e systemsare
omplete. If one insists on using the natural semanti
s the or-
onstru
t wouldmodel a kind of \angeli

hoi
e" and both rules would be sound. However, onlythe partial
orre
tness inferen
e system will be
omplete.Non-re
ursive pro
eduresFor the sake of simpli
ity we shall restri
t our attention to statements with atmost one pro
edure de
laration. For non-re
ursive pro
edures the idea is that anassertion that holds for the body of the pro
edure also holds for the
alls of thepro
edure. This motivates extending the partial
orre
tness inferen
e system ofTable 6.1 with the rule

198 6 Axiomati
 Program Veri�
ation[
allp℄ f P g S f Q gf P g
all p f Q g where p is de�ned by pro
 p is SSimilarly the inferen
e system for total
orre
tness in Table 6.2
an be extendedwith the rule[
allt℄ f P g S f + Q gf P g
all p f + Q g where p is de�ned by pro
 p is SIn both
ases the resulting inferen
e system
an be proved sound and
omplete.Re
ursive pro
eduresThe above rules turn out to be insuÆ
ient when pro
edures are allowed to bere
ursive: in order to prove an assertion for
all p one has to prove the assertionfor the body of the pro
edure and this implies that one has to prove an assertionabout ea
h o

urren
e of
all p inside the body and so on.Consider �rst the
ase of partial
orre
tness assertions. In order to prove someproperty f P g
all p f Q g we shall prove the similar property for the body ofthe pro
edure but under the assumption that f P g
all p f Q g holds for there
ursive
alls of p. Often this is expressed by a rule of the form[
allre
p ℄ f P g
all p f Q g `p f P g S f Q gf P g
all p f Q gwhere p is de�ned by pro
 p is SThe premise of the rule expresses that f P g S f Q g is provable under theassumption that f P g
all p f Q g
an be proved for the re
ursive
alls presentin S . The
on
lusion expresses that f P g
all p f Q g holds for all
alls of p.Example 6.34 Consider the following statementbegin pro
 fa
 is (if x = 1 then skipelse (y := x?y; x := x�1;
all fa
));y := 1;
all fa
endWe want to prove that the �nal value of y is the fa
torial of the initial value of x.We shall prove thatf x > 0 ^ n = y ? x! g
all fa
 f y = n gwhere x > 0 ^ n = y ? x! is an abbreviation for the predi
ate P de�ned byP s = (s x > 0 and s n = s y ? (s x)!)

6.4 Extensions of the axiomati
 system 199We assume that`p f x > 0 ^ n = y ? x! g
all fa
 f y = n g (*)holds for the re
ursive
alls of fa
. We shall then
onstru
t a proof off x > 0 ^ n = y ? x! gif x = 1 then skip else (y := x?y; x := x�1;
all fa
)f y = n g (**)and, using [
allre
p ℄ we obtain a proof of (*) for all o

urren
es of
all fa
. Toprove (**) we �rst use the assumption (*) to get`p f x > 0 ^ n = y ? x! g
all fa
 f y = n gThen we apply [assp℄ and [
ompp℄ twi
e and get`p f ((x > 0 ^ n = y ? x!)[x7!x�1℄)[y7!x?y℄ gy := x?y; x := x�1;
all fa
f y = n gWe have:(x=1) ^ (x > 0 ^ n = y ? x!)) ((x > 0 ^ n = y ? x!)[x7!x�1℄)[y7!x?y℄so using [
onsp℄ we get`p f :(x=1) ^ (x > 0 ^ n = y ? x!) gy := x?y; x := x�1;
all fa
f y = n gUsing thatx=1 ^ x > 0 ^ n = y ? x!) y = nit is easy to prove`p f x=1 ^ x > 0 ^ n = y ? x! g skip f y = n gso [ifp℄
an be applied and gives a proof of (**). 2Table 6.1 extended with the rule [
allre
p ℄
an be proved to be sound. However,in order to get a
ompleteness result the inferen
e system has to be extended withadditional rules. To illustrate why this is ne
essary
onsider the following versionof the fa
torial program:

200 6 Axiomati
 Program Veri�
ationbegin pro
 fa
 is if x=1 then y := 1else (x := x�1;
all fa
; x := x+1; y := x?y);
all fa
endAssume that we want to prove that this program does not
hange the value of x,that isf x = n g
all fa
 f x = n g (*)In order to do that we assume that we have a proof of (*) for the re
ursive
all offa
 and we have to
onstru
t a proof of the property for the body of the pro
edure.It seems that in order to do so we must
onstru
t a proof off x = n�1 g
all fa
 f x = n�1 gand there are no axioms and rules that allow us to obtain su
h a proof from (*).However, we shall not go further into this, but Chapter 7 will provide appropriatereferen
es.The
ase of total
orre
tness is slightly more
ompli
ated be
ause we have tobound the number of re
ursive
alls. The rule adopted is[
allre
t ℄ f P(z) g
all p f + Q g `t f P(z+1) g S f + Q gf 9z.P(z) g
all p f + Q gwhere :P(0) holdsand z ranges over the natural numbers (that is z�0)and where p is de�ned by pro
 p is SThe premise of this rule expresses that if we assume that we have a proof off P(z) g
all p f + Q g for all re
ursive
alls of p of depth at most z then we
an prove f P(z+1) g S f + Q g. The
on
lusion expresses that for any depth ofre
ursive
alls we have a proof of f 9z.P(z) g
all p f + Q g.The inferen
e system of Table 6.2 extended with the rule [
allre
t ℄
an be provedto be sound. If it is extended with additional rules (as dis
ussed above) it
an alsobe proved to be
omplete.6.5 Assertions for exe
ution timeA proof system for total
orre
tness
an be used to prove that a program doesindeed terminate but it does not say how many resour
es it needs in order toterminate. We shall now show how to extend the total
orre
tness proof system ofTable 6.2 to prove the order of magnitude of the exe
ution time of a statement.

6.5 Assertions for exe
ution time 201It is easy to give some informal guidelines for how to determine the order ofmagnitude of exe
ution time:assignment: the exe
ution time is O(1), that is, it is bounded by a
onstant,skip: the exe
ution time is O(1),
omposition: the exe
ution time is, to within a
onstant fa
tor, the sum of theexe
ution times of ea
h of the statements,
onditional: the exe
ution time is, to within a
onstant fa
tor, the largest of theexe
ution times of the two bran
hes, anditeration: the exe
ution time of the loop is, to within a
onstant fa
tor, the sum,over all iterations round the loop, of the time to exe
ute the body.The idea now is to formalize these rules by giving an inferen
e system for reasoningabout exe
ution times. To do so we shall pro
eed in three stages:� �rst we spe
ify the exa
t time needed to evaluate arithmeti
 and booleanexpressions,� next we extend the natural semanti
s of Chapter 2 to
ount the exa
t exe-
ution time, and� �nally we extend the total
orre
tness proof system to prove the order ofmagnitude of the exe
ution time of statements.However, before addressing these issues we have to �x a
omputational model, thatis we have to determine how to
ount the
ost of the various operations. Thea
tual
hoi
e is not so important but for the sake of simpli
ity we have based itupon the abstra
t ma
hine of Chapter 3. The idea is that ea
h instru
tion ofthe ma
hine takes one time unit and the time required to exe
ute an arithmeti
expression, a boolean expression or a statement will be the time required to exe
utethe generated
ode. However, no knowledge of Chapter 3 is required in the sequel.Exa
t exe
ution times for expressionsThe time needed to evaluate an arithmeti
 expression is given by a fun
tionT A: Aexp ! Zso T A[[a℄℄ is the number of time units required to evaluate a in any state. Similarly,the fun
tionT B: Bexp ! Zdetermines the number of time units required to evaluate a boolean expression.These fun
tions are de�ned in Table 6.3.

202 6 Axiomati
 Program Veri�
ationT A[[n℄℄ = 1T A[[x ℄℄ = 1T A[[a1 + a2℄℄ = T A[[a1℄℄ + T A[[a2℄℄ + 1T A[[a1 ? a2℄℄ = T A[[a1℄℄ + T A[[a2℄℄ + 1T A[[a1 � a2℄℄ = T A[[a1℄℄ + T A[[a2℄℄ + 1T B[[true℄℄ = 1T B[[false℄℄ = 1T B[[a1 = a2℄℄ = T A[[a1℄℄ + T A[[a2℄℄ + 1T B[[a1 � a2℄℄ = T A[[a1℄℄ + T A[[a2℄℄ + 1T B[[:b℄℄ = T B[[b℄℄ + 1T B[[b1 ^ b2℄℄ = T B[[b1℄℄ + T B[[b2℄℄ + 1Table 6.3: Exa
t exe
ution times for expressionsExa
t exe
ution times for statementsTurning to the exe
ution time for statements we shall extend the natural semanti
sof Table 2.1 to spe
ify the time requirements. This is done by extending thetransitions to have the formhS , si !t s 0meaning that if S is exe
uted from state s then it will terminate in state s 0 andexa
tly t time units will be required for this. The extension of Table 2.1 is fairlystraightforward and is given in Table 6.4.The inferen
e systemThe inferen
e system for proving the order of magnitude of the exe
ution time ofstatements will have assertions of the formf P g S f e + Q gwhere P and Q are predi
ates as in the previous inferen
e systems and e is anarithmeti
 expression (that is e 2 Aexp). The idea is thatif the exe
ution of S is started in a state satisfying Pthen it terminates in a state satisfying Qand the required exe
ution time is O(e), that is has order of magnitude e.So for example

6.5 Assertions for exe
ution time 203[asstns℄ hx := a, si !T A[[a℄℄+1 s[x 7!A[[a℄℄s℄[skiptns℄ hskip, si !1 s[
omptns℄ hS 1,si !t1 s 0, hS 2,s 0i !t2 s 00hS 1;S 2, si !t1+t2 s 00[if tttns℄ hS 1,si !t s 0hif b then S 1 else S 2, si !T B[[b℄℄+t+1 s 0 if B[[b℄℄s = tt[if�tns℄ hS 2,si !t s 0hif b then S 1 else S 2, si !T B[[b℄℄+t+1 s 0 if B[[b℄℄s = �[while tttns℄ hS ,si !t s 0, hwhile b do S , s 0i !t0 s 00hwhile b do S , si !T B[[b℄℄+t+t0+2 s 00 if B[[b℄℄s = tt[while�tns℄ hwhile b do S , si !T B[[b℄℄+3 s if B[[b℄℄s = �Table 6.4: Natural semanti
s for While with exa
t exe
ution timesf x = 3 g y := 1; while :(x=1) do (y := y?x; x := x�1) f 1 + true gexpresses that the exe
ution of the fa
torial statement from a state where x has thevalue 3 has order of magnitude 1, that is it is bounded by a
onstant. Similarly,f x > 0 g y := 1; while :(x=1) do (y := y?x; x := x�1) f x + true gexpresses that the exe
ution of the fa
torial statement on a state where x is positivehas order of magnitude x.Formally, validity of the formula f P g S f e + Q g is de�ned byj=e f P g S f e + Q gif and only ifthere exists a natural number k su
h that for all states s,if P s = tt then there exists a state s 0 and a number t su
h thatQ s 0 = tt, hS , si !t s 0, and t � k ? (A[[e℄℄s)Note that the expression e is evaluated in the initial state rather than the �nalstate.The axioms and rules of the inferen
e system are given in Table 6.5. Provabilityof the assertion f P g S f e + Q g in the inferen
e system is written`e f P g S f e + Q g

204 6 Axiomati
 Program Veri�
ation[asse℄ f P [x 7!A[[a℄℄℄ g x := a f 1 + P g[skipe℄ f P g skip f 1 + P g[
ompe℄ f P ^ B[[e 02=u℄℄ g S 1 f e1 + Q ^ B[[e2�u℄℄ g, f Q g S 2 f e2 + R gf P g S 1; S 2 f e1+e 02 + R gwhere u is an unused logi
al variable[ife℄ f B[[b℄℄ ^ P g S 1 f e + Q g, f :B[[b℄℄ ^ P g S 2 f e + Q gf P g if b then S 1 else S 2 f e + Q g[whilee℄ f P(z+1) ^ B[[e 0 =u℄℄ g S f e1 + P(z) ^ B[[e�u℄℄ gf 9z.P(z) g while b do S f e + P(0) gwhere P(z+1)) B[[b℄℄ ^ B[[e�e1+e 0℄℄, P(0)) :B[[b℄℄ ^ B[[1�e℄℄and u is an unused logi
al variableand z ranges over natural numbers (that is z�0)[
onse℄ f P 0 g S f e 0 + Q 0 gf P g S f e + Q gwhere (for some natural number k) P) P 0 ^ B[[e 0�k?e℄℄and Q 0) QTable 6.5: Axiomati
 system for order of magnitude of exe
ution timeThe assignment statement and the skip statement
an be exe
uted in
onstanttime and therefore we use the arithmeti
 expression 1.The rule [
ompe℄ assumes that we have proofs showing that e1 and e2 are theorder of magnitudes of the exe
ution times for the two statements. However, e1expresses the time requirements of S 1 relative to the initial state of S 1 and e2expresses the time requirements relative to the initial state of S 2. This means thatwe
annot simply use e1 + e2 as the time requirement for S 1; S 2. We have torepla
e e2 with an expression e 02 su
h that e 02 evaluated in the initial state of S 1will bound the value of e2 in the initial state of S 2 (whi
h is the �nal state of S 1).This is expressed by the extended pre
ondition and post
ondition of S 1 using thelogi
al variable u.The rule [ife℄ is fairly straightforward sin
e the time required for the test is
onstant.In the rule for the while-
onstru
t we assume that the exe
ution time is e1 forthe body and is e for the loop itself. As in the rule [
ompe℄ we
annot just usee1 + e as the total time required be
ause e1 refers to the state before the bodyof the loop is exe
uted and e to the state after the body is exe
uted on
e. We

6.5 Assertions for exe
ution time 205shall therefore require that there is an expression e 0 su
h that e 0 evaluated beforethe body will bound e evaluated after the body. Then it must be the
ase that esatis�es e � e1 + e 0 be
ause e has to bound the time for exe
uting the while-loopindependently of the number of times it is unfolded. As we shall see in Example6.36, this
orresponds to the re
urren
e equations that often have to be solvedwhen analysing the exe
ution time of programs. Finally, the rule [
onse℄ should bestraightforward.Example 6.35 We shall now prove that the exe
ution time of the fa
torial state-ment has order of magnitude x. This
an be expressed by the following assertion:f x > 0 g y := 1; while :(x=1) do (y := y?x; x := x�1) f x + true gThe inferen
e of this assertion pro
eeds in a number of stages. First we de�ne thepredi
ate INV (z) that is to be the invariant of the while-loopINV (z) s = (s x > 0 and s x = z + 1)The logi
al variables u1 and u2 are used for the while-loop and the body of thewhile-loop, respe
tively. We shall �rst
onsider the body of the loop. Using [asse℄we get̀ e f (INV (z) ^ x�u1)[x7!x�1℄ g x := x � 1 f 1 + INV (z) ^ x�u1 gSimilarly, we get`e f ((INV (z) ^ x�u1)[x7!x�1℄ ^ 1�u2)[y7!y?x℄ gy := y ? xf 1 + (INV (z) ^ x�u1)[x7!x�1℄ ^ 1�u2 gBefore applying the rule [
ompe℄ we have to modify the pre
ondition of the aboveassertion. We haveINV (z+1) ^ x�1=u1 ^ 1=u2) ((INV (z) ^ x�u1)[x7!x�1℄ ^ 1�u2)[y7!y?x℄so using [
onse℄ we get`e f INV (z+1) ^ x�1=u1 ^ 1=u2 gy := y ? xf 1 + (INV (z) ^ x�u1)[x7!x�1℄ ^ 1�u2 gWe
an now apply [
ompe℄ and get

206 6 Axiomati
 Program Veri�
ation`e f INV (z+1) ^ x�1=u1 gy := y ? x; x := x�1f 1+1 + INV (z) ^ x�u1 gand using [
onse℄ we get`e f INV (z+1) ^ x�1=u1 gy := y ? x; x := x�1f 1 + INV (z) ^ x�u1 gIt is easy to verify thatINV (z+1)) :(x = 1) ^ x�1+(x�1), andINV (0)) :(:(x = 1)) ^ 1�xTherefore we
an use the rule [whilee℄ and get`e f 9z.INV (z) g while :(x=1) do (y := y?x; x := x�1) f x + INV (0) gWe shall now apply the axiom [asse℄ to the statement y := 1 and get`e f (9z.INV (z) ^ 1�u3)[y7!1℄ g y := 1 f 1 + 9z.INV (z) ^ 1�u3 gWe havex>0 ^ 1=u3) (9z.INV (z) ^ 1�u3)[y7!1℄so using [
onse℄ we get`e f x>0 ^ 1=u3 g y := 1 f 1 + 9z.INV (z) ^ 1�u3 gThe rule [
ompe℄ now gives`e f x>0 gy := 1; while :(x=1) do (y := y?x; x := x�1)f 1+x + INV (0) gClearly we havex>0) 1+x � 2?x, andINV (0)) trueso applying rule [
onse℄ we get`e f x > 0 gy := 1; while :(x=1) do (y := y?x; x := x�1)f x + true g

6.5 Assertions for exe
ution time 207as required. 2Example 6.36 Assume now that we want to determine an arithmeti
 expressione fa
 su
h that`e f x > 0 gy := 1; while :(x=1) do (y := y?x; x := x�1)f e fa
 + true gIn other words we want to determine the order of magnitude of the time requiredto exe
ute the fa
torial statement. We
an then attempt
onstru
ting a proofof the above assertion using the inferen
e system of Table 6.5 with e fa
 being anunspe
i�ed arithmeti
 expression. The various side
onditions of the rules willthen spe
ify a set of (in)equations that have to be ful�lled by e fa
 in order for theproof to exist.We shall �rst
onsider the body of the loop. Very mu
h as in the previousexample we get`e f INV (z+1) ^ e[x7!x�1℄=u1 gy := y ? x; x := x�1f 1 + INV (z) ^ e�u1 gwhere e is the exe
ution time of the while-
onstru
t. We
an now apply the rule[whilee℄ if e ful�ls the
onditionsINV (z+1)) e�1+e[x7!x�1℄INV (0)) 1�e (*)and we will get`e f 9z.INV (z) g while :(x=1) do (y := y?x; x := x�1) f e + INV (0) gThe requirement (*)
orresponds to the re
urren
e equationT (x) = 1 + T (x�1)T (1) = 1obtained by the standard te
hniques from exe
ution time analysis. If we take e tobe x then (*) is ful�lled. The remainder of the proof is very mu
h as in Exer
ise6.35 and we get that e fa
 must satisfyx > 0) x+1 � k?e fa
 for some
onstant kso e fa
 may be taken to be x. 2

208 6 Axiomati
 Program Veri�
ationExer
ise 6.37 Modify the proof of Lemma 6.30 to show that the inferen
e systemof Table 6.5 is sound. 2Exer
ise 6.38 ** Suggest an alternative rule for while b do S that expressesthat its exe
ution time, negle
ting
onstant fa
tors, is the produ
t of the numberof times the loop is exe
uted and the maximal exe
ution time for the body of theloop. 2Exer
ise 6.39 Suggest an inferen
e rule for repeat S until b. You are notallowed to rely on the existen
e of a while-
onstru
t in the language. 2

Chapter 7Further ReadingIn this book we have
overed the basi
 ingredients in three approa
hes to semanti
s:� operational semanti
s,� denotational semanti
s, and� axiomati
 semanti
s.We have
on
entrated on a rather simple language of while-programs and havestudied the underlying theories and the formal relationships between the variousapproa
hes. The power of the three approa
hes have been illustrated by vari-ous extensions of While: non-determinism, parallelism, re
ursive pro
edures andex
eptions.We believe that formal semanti
s is an important tool for reasoning about manyaspe
ts of the behaviour of programs and programming languages. To support thisbelief we have given three examples, one for ea
h approa
h to semanti
s:� a simple
ompiler,� a stati
 program analysis, and� an inferen
e system for exe
ution time.In
on
lusion we shall provide a few pointers to the literature (mainly textbooks)where a more
omprehensive treatment of language features or theoreti
al aspe
tsmay be found. We do not referen
e the vast number of resear
h publi
ations inthe area but rely on the referen
es in the books mentioned.Operational semanti
sStru
tural operational semanti
s was introdu
ed by Gordon Plotkin in [14℄. Thisis a standard referen
e and
overs a number of features from imperative and fun
-tional languages whereas features from parallel languages are
overed in [15℄. A209

210 7 Further Readingmore introdu
tory treatment of stru
tural operational semanti
s is given in [9℄.Natural semanti
s is derived from stru
tural operational semanti
s and the basi
ideas are presented in [6℄ for a fun
tional language.Although we have
overed many of the essential ideas behind operational se-manti
s we should like to mention three te
hniques that have had to be omitted.A te
hnique that is often used when spe
ifying a stru
tural operational se-manti
s is to extend the synta
ti

omponent of the
on�gurations with spe
ialnotation for re
ording partially pro
essed
onstru
ts. The inferen
e system willthen
ontain axioms and rules that handle these \extended"
on�gurations. Thiste
hnique may be used to spe
ify a stru
tural operational semanti
s of the lan-guages Blo
k and Pro
 in Se
tion 2.5 and to spe
ify a stru
tural operationalsemanti
s of expressions.Both kinds of operational semanti
s
an easily be extended to
ope expli
itlywith dynami
 errors (as e.g. division by zero). The idea is to extend the set of
on�gurations with spe
ial error-
on�gurations and then augment the inferen
esystem with extra axioms and rules for how to handle these
on�gurations.Often programs have to ful�l
ertain
onditions in order to be stati
ally well-formed and hen
e pre
lude
ertain dynami
 errors. These
onditions
an beformulated using indu
tively de�ned predi
ates and may be integrated with theoperational semanti
s.Provably
orre
t implementationThe
orre
tness of the implementation of Chapter 3 was a relatively simple proofbe
ause it was based on an abstra
t ma
hine designed for the purpose. In general,when more realisti
 ma
hines or larger languages are
onsidered, proofs easilybe
ome unwieldy and perhaps for this reason there is no ideal textbook in thisarea. We therefore only referen
e two resear
h papers: [7℄ for an approa
h basedon natural semanti
s and [13℄ for an approa
h based on denotational semanti
s.Denotational semanti
sA general introdu
tion to denotational semanti
s (as developed by C. Stra
heyand D. S
ott) may be found in [16℄. It
overs denotational semanti
s for (mainly)imperative languages and
overs the fundamentals of domain theory (in
ludingre
exive domains). Another good referen
e for imperative languages is [8℄ but itdoes not
over the domain theory. We should also mention a
lassi
 in the �eld[17℄ even though the domain theory is based on the (by now obsolete) approa
h of
omplete latti
es.We have restri
ted the treatment of domain theory to what is needed for spe
i-fying the denotational semanti
s of the while-language. The bene�t of this is thatwe
an restri
t ourselves to partial fun
tions between states and thereby obtain a

211relatively simple theoreti
al development. The drawba
k is that it be
omes rather
umbersome to verify the existen
e of semanti
 spe
i�
ations for other languages(as eviden
ed in Se
tion 4.5).The traditional solution is to develop a meta-language for expressing denota-tional de�nitions. The theoreti
al foundation of this language will then ensure thatthe semanti
 fun
tions do exist as long as one only uses domains and operationsfrom the meta-language. The bene�t of this is obvious; the drawba
k is that onehas to prove a fair amount of results but the e�orts are greatly rewarded in thelong run. Both [16℄ and [17℄
ontain su
h a development.The denotational approa
h
an handle abortion and non-determinism usinga kind of powersets
alled power-domains. Certain kinds of parallelism
an behandled as well but for many purposes it is better to use a stru
tural operationalsemanti
s instead.Stati
 program analysisA sele
tion of stati
 program analysis te
hniques for imperative languages (as wellas te
hniques for implementations on realisti
 ma
hines) is given in [3℄; but unfor-tunately, no
onsiderations of
orre
tness are given. Treatments of
orre
tness areoften based on abstra
t interpretation and [1℄ surveys a number of approa
hes.Axiomati
 program veri�
ationA general introdu
tion to program veri�
ation, and in parti
ular axiomati
 se-manti
s may be found in [11℄. The presentation
overs a
ow
hart language, awhile-language and a (�rst order) fun
tional language and also in
ludes a studyof expressiveness (as needed for the intensional approa
h to axiomati
 semanti
s).Many books, in
luding [10℄, develop axiomati
 program veri�
ation together withpra
ti
ally motivated examples. A good introdu
tion to the analysis of resour
erequirements of programs is [2℄ and the formulation as formal inferen
e systemsmay be found in [12℄. We should also mention a
lassi
 [5℄ that studies soundnessand
ompleteness properties with respe
t to a denotational semanti
s. Rules forpro
edures may be found in [4℄.We should point out that we have used the extensional approa
h to spe
ifyingthe assertions of the inferen
e systems. This allows us to
on
entrate on theformulation of the inferen
e systems without having to worry about the existen
eof the assertions in an expli
it assertion language. However, it is more
ommon touse the intensional approa
h as is done in [11℄.

212 7 Further Reading

Appendix AReview of NotationWe use the following notation:9 there exists8 for allf x j : : :x : : : g the set of those x su
h that : : :x : : : holdsx 2 X x is a member of the set XX � Y set X is
ontained in set YX [Y f z j z2X or z2Y g (union)X \ Y f z j z2X and z2Y g (interse
tion)X n Y f z j z2X and z 62Y g (set di�eren
e)X � Y f hx , yi j x2X and y2Y g (Cartesian produ
t)P(X) f Z j Z � X g (powerset)SY f y j 9Y2Y: y2Y g (so that Sf Y 1, Y 2 g = Y 1[Y 2); the empty setT f tt, � g (truth values tt (true) and � (false))N f 0, 1, 2, : : : g (natural numbers)Z f : : :, {2, {1, 0, 1, 2, : : : g (integers)f :X!Y f is a total fun
tion from X to YX!Y f f j f :X!Y gf :X ,!Y f is a partial fun
tion from X to YX ,!Y f f j f :X ,!Y gIn addition to this we have spe
ial notations for fun
tions, relations, predi
ates213

214 A Review of Notationand transition systems.Fun
tionsThe e�e
t of a fun
tion f :X!Y is expressed by its graph:graph(f) = f hx , yi2X�Y j f x = y gwhi
h is merely an element of P(X�Y). The graph of f has the following properties� hx , yi2graph(f) and hx , y 0i2graph(f) imply y = y 0, and� 8x2X : 9y2Y : hx , yi2 graph(f)This expresses the single-valuedness of f and the totality of f . We say that f isinje
tive if f x = f x 0 implies that x = x 0.A partial fun
tion g :X ,!Y is a fun
tion from a subset X g of X to Y , that isg :X g!Y . Again one may de�negraph(g) = f hx , yi2X�Y j g x = y and x2Xg gbut now only an analogue of the single-valuedness property above is satis�ed. Weshall write g x = y whenever hx , yi2graph(g) and g x = undef whenever x 62X g,that is whenever :9y2Y : hx , yi2graph(g). To distinguish between a fun
tion fand a partial fun
tion g one often
alls f a total fun
tion. We shall view the partialfun
tions as en
ompassing the total fun
tions.For total fun
tions f 1 and f 2 we de�ne their
omposition f 2Æf 1 by(f 2Æf 1) x = f 2(f 1 x)(Note that the opposite order is sometimes used in the literature.) For partialfun
tions g1 and g2 we de�ne g2Æg1 similarly:(g2Æg1) x = z if there exists y su
h that g1 x = y and g2 y = z(g2Æg1) x = undef if g1 x = undef orif there exists y su
h that g1 x = ybut g2 y = undefThe identity fun
tion id:X!X is de�ned byid x = xFinally, if f :X!Y , x2X and y2Y then the fun
tion f [x 7!y ℄:X!Y is de�ned byf [x 7!y ℄ x 0 = 8<: y if x = x 0f x 0 otherwiseA similar notation may be used when f is a partial fun
tion.The fun
tion f is of order of magnitude g , written O(g), if there exists a naturalnumber k su
h that 8x . f x � k ? (g x).

215RelationsA relation from X to Y is a subset of X�Y (that is an element of P(X�Y)). Arelation on X is a subset of X�X . If f :X!Y or f :X ,!Y then the graph of f is arelation. (Sometimes a fun
tion is identi�ed with its graph but we shall keep thedistin
tion.) The identity relation on X is the relationIX = f hx , x i j x2X gfrom X to X . When X is
lear from the
ontext we shall omit the subs
ript Xand simply write I.If R1�X�Y and R2�Y�Z the
omposition of R1 followed by R2, whi
h wedenote by R1�R2, is de�ned byR1�R2 = f hx , z i j 9y2Y : hx , yi2R1 and hy , z i2R2 gNote that the order of
omposition di�ers from that used for fun
tions,graph(f 2Æf 1) = graph(f 1) � graph(f 2)and that we have the equationI � R = R � I = RIf R is a relation on X then the re
exive transitive
losure is the relation R�on X de�ned byR� = f hx , x 0i j 9n�1: 9x 1, : : :, x n: x = x 1 and x 0 = x nand 8i<n: hx i, x i+1i2R gNote that by taking n=1 and x=x 0=x 1 it follows that I�R�. In a similar way itfollows that R�R�. Finally, we de�neR+ = R � R�and observe that R � R+ � R�.Predi
atesA predi
ate on X is a fun
tion from X to T. If p:X!T is a predi
ate on X , therelation Ip on X is de�ned byIp = f hx , x i j x2X and p x = tt gNote that Ip � I and thatIp � R = f hx , yi j p x = tt and hx , yi2R gR � Iq = f hx , yi j hx , yi2R and q y = tt g

216 A Review of NotationTransition systemsA transition system is a triple of the form(�,T, �)where � is a set of
on�gurations, T is a subset of �
alled the terminal (or �nal)
on�gurations and � is a relation on �
alled a transition relation. The relation� must satisfy8
2T: 8
02�: :(
�
0)Any
on�guration
 in �nT su
h that the transition
�
0 holds for no
0 is
alledstu
k.

Appendix BIntrodu
tion to MirandaImplementationsIn this appendix we give the basi
 de�nitions needed to implement the varioussemanti
 de�nitions in Miranda. Essentially, this amounts to an implementationof the material of Chapter 1.B.1 Abstra
t syntaxFor Num we
hoose the primitive type num of Miranda. For Var we
hoosestrings of
hara
ters and so de�ne the type synonym:> var == [
har℄For ea
h of the synta
ti

ategories Aexp, Bexp and Stm we de�ne an algebrai
data type taking into a

ount the various possibilities mentioned by the BNFsyntax of Se
tion 1.2:> aexp ::= N num | V var | Add aexp aexp |> Mult aexp aexp | Sub aexp aexp> bexp ::= TRUE | FALSE | Eq aexp aexp | Le aexp aexp |> Neg bexp | And bexp bexp> stm ::= Ass var aexp | Skip | Comp stm stm |> If bexp stm stm | While bexp stmExample B.1 The fa
torial statement of Exer
ise 1.1 is represented by
217

218 B Introdu
tion to Miranda Implementations> fa
torial = Comp (Ass "y" (N 1))> (While (Neg (Eq (V "x") (N 1)))> (Comp (Ass "y" (Mult (V "y") (V "x")))> (Ass "x" (Sub (V "x") (N 1)))))Note that this is a representation of the abstra
t syntax of the statement. Onemay be interested in a parser that would translate the more readable formy := 1; while :(x = 1) do (y := y * x; x := x � 1)into the above representation. However, we shall refrain from undertaking the taskof implementing a parser as we are mainly
on
erned with semanti
s. 2Exer
ise B.2 Spe
ify an element of stm that represents the statement
onstru
tedin Exer
ise 1.2 for
omputing n to the power of m. 2B.2 Evaluation of expressionsWe shall �rst be
on
erned with the representation of values and states. Thenatural numbers Z will be represented by the type num meaning that the semanti
fun
tion N be
omes trivial. The truth values T will be represented by the typebool of booleans. So we de�ne the type synonyms:> z == num> t == boolThe set State is de�ned as the set of fun
tions from variables to natural numbersso we de�ne:> state == var -> zExample B.3 The state s init that maps all variables ex
ept x to 0 and thatmaps x to 3
an be de�ned by> s init "x" = 3> s init y = 0Note that we en
apsulate the spe
i�
 variable name x in quotes whereas y
an beany variable. 2The fun
tions A and B will be
alled a val and b val in the implementationand they are de�ned by dire
tly translating Tables 1.1 and 1.2 into Miranda:

B.2 Evaluation of expressions 219> a val :: aexp -> state -> z> b val :: bexp -> state -> t> a val (N n) s = n> a val (V x) s = s x> a val (Add a1 a2) s = (a val a1 s) + (a val a2 s)> a val (Mult a1 a2) s = (a val a1 s) * (a val a2 s)> a val (Sub a1 a2) s = (a val a1 s) - (a val a2 s)> b val TRUE s = True> b val FALSE s = False> b val (Eq a1 a2) s = True, if a val a1 s = a val a2 s> = False, if a val a1 s ~= a val a2 s> b val (Le a1 a2) s = True, if a val a1 s <= a val a2 s> = False, if a val a1 s > a val a2 s> b val (Neg b) s = True, if b val b s = False> = False, if b val b s = True> b val (And b1 b2) s = True, if b val b1 s = True &> b val b2 s = True> = False, if b val b1 s = False \/> b val b2 s = FalseExer
ise B.4 Constru
t an algebrai
 data type for the binary numerals
onsid-ered in Se
tion 1.3. De�ne a fun
tion n val that asso
iates a number (in thede
imal system) to ea
h numeral. 2Exer
ise B.5 De�ne fun
tions> fv aexp :: aexp -> [var℄> fv bexp :: bexp -> [var℄
omputing the set of free variables o

urring in an expression. Ensure that ea
hvariable o

urs at most on
e in the resulting lists. 2Exer
ise B.6 De�ne fun
tions> subst aexp :: aexp -> var -> aexp -> aexp> subst bexp :: bexp -> var -> aexp -> bexp

220 B Introdu
tion to Miranda Implementationsimplementing the substitution operations, that is subst aexp a y a0
onstru
tsa[y 7!a0℄ and subst bexp b y a0
onstru
ts b[y 7!a0℄. 2

Appendix COperational Semanti
s inMirandaIn this appendix we implement the natural semanti
s and the stru
tural opera-tional semanti
s of Chapter 2 inMiranda and show how similar te
hniques
an beused to implement an interpreter for the abstra
t ma
hine and the
ode generationof Chapter 3.We shall need the de�nitions from Appendix B so we begin by in
luding these:> %in
lude "appB"In Chapter 2 we distinguish between two kinds of
on�gurations, intermediate
on�gurations and �nal
on�gurations. This is
aptured by the algebrai
 datatype:>
onfig ::= Inter stm state | Final stateIn the next se
tion we shall show how the natural semanti
s
an be implementedand after that we shall turn to the stru
tural operational semanti
s.C.1 Natural semanti
sCorresponding to the relation! in Se
tion 2.1 we shall introdu
e a fun
tion ns stmof type> ns stm ::
onfig ->
onfigThe argument of this fun
tion
orresponds to the left-hand side of ! whereasthe result produ
ed will
orrespond to the right-hand side of the relation. Thisis possible be
ause Theorem 2.9 shows that the relation is deterministi
. Thede�nition of ns stm follows
losely the de�nition of ! in Table 2.1:221

222 C Operational Semanti
s in Miranda> ns stm (Inter (Ass x a) s)> = Final (update s x (a val a s))> where> update s x v y = v, if x = y> = s y, otherwise> ns stm (Inter (Skip) s) = Final s> ns stm (Inter (Comp ss1 ss2) s)> = Final s''> where> Final s' = ns stm (Inter ss1 s)> Final s'' = ns stm (Inter ss2 s')> ns stm (Inter (If b ss1 ss2) s)> = Final s', if b val b s> where> Final s' = ns stm (Inter ss1 s)> ns stm (Inter (If b ss1 ss2) s)> = Final s', if ~b val b s> where> Final s' = ns stm (Inter ss2 s)> ns stm (Inter (While b ss) s)> = Final s'', if b val b s> where> Final s' = ns stm (Inter ss s)> Final s'' = ns stm (Inter (While b ss) s')> ns stm (Inter (While b ss) s)> = Final s, if ~b val b sNote that in the axiom for assignment update s x v
orresponds to s[x 7!v ℄.The semanti
 fun
tion Sns
an now be de�ned by

C.2 Stru
tural operational semanti
s 223> s ns ss s = s'> where> Final s' = ns stm (Inter ss s)Example C.1 We
an exe
ute the fa
torial statement (see Example B.1) fromthe state s init mapping x to 3 and all other variables to 0 (see Example B.3).The �nal state s fa
 is obtained as follows:> s fa
 = s ns fa
torial s initTo get the �nal value of y we evaluate s fa
 "y". 2Exer
ise C.2 Extend the de�nition of stm and ns stm to in
lude the repeat-
onstru
t. 2Exer
ise C.3 De�ne an algebrai
 data type deriv tree representing the deriva-tion trees of the natural semanti
s. Constru
t a variant of the fun
tion s ns oftype s ns :: stm -> state -> deriv treethat
onstru
ts the derivation tree for a given statement and state rather than justthe �nal state. Apply the fun
tion to some example statements. 2C.2 Stru
tural operational semanti
sWhen spe
ifying the stru
tural operational semanti
s we shall need to test whether) produ
es an intermediate
on�guration or a �nal
on�guration. So we shallintrodu
e the fun
tion is Final de�ned by:> is Final (Inter ss s) = False> is Final (Final s) = TrueCorresponding to the relation) we de�ne the fun
tion sos stm of type:> sos stm ::
onfig ->
onfigAs in the previous se
tion the argument of this fun
tion will
orrespond to the
on-�guration on the left-hand side of the relation) and the result will
orrespond tothe right-hand side. Again this implementation te
hnique is only possible be
ausethe semanti
s is deterministi
 (Exer
ise 2.22). The de�nition of sos stm followsTable 2.2
losely:

224 C Operational Semanti
s in Miranda> sos stm (Inter (Ass x a) s)> = Final (update s x (a val a s))> where> update s x v y = v, if x = y> = s y, otherwise> sos stm (Inter Skip s) = Final s> sos stm (Inter (Comp ss1 ss2) s)> = Inter (Comp ss1' ss2) s',> if ~is Final(sos stm (Inter ss1 s))> where> Inter ss1' s' = sos stm (Inter ss1 s)> sos stm (Inter (Comp ss1 ss2) s)> = Inter ss2 s',> if is Final(sos stm (Inter ss1 s))> where> Final s' = sos stm (Inter ss1 s)> sos stm (Inter (If b ss1 ss2) s)> = Inter ss1 s, if b val b s> sos stm (Inter (If b ss1 ss2) s)> = Inter ss2 s, if ~b val b s> sos stm (Inter (While b ss) s)> = Inter (If b (Comp ss (While b ss)) Skip) sThe fun
tion sos stm implements one step of the
omputation. The fun
tionderiv seq de�ned below will determine the
omplete derivation sequen
e (even ifit is in�nite!).> deriv seq (Inter ss s)> = (Inter ss s) : (deriv seq (sos stm (Inter ss s)))> deriv seq (Final s) = [Final s℄The semanti
 fun
tion Ssos
an now be de�ned by the Miranda fun
tion s sos:

C.3 Extensions of While 225> s sos ss s = s'> where> Final s' = last (deriv seq (Inter ss s))Example C.4 The derivation sequen
e obtained by exe
uting the fa
torial state-ment on the state s init of Example B.3
an now be obtained as follows:> fa
 seq = deriv seq (Inter fa
torial s init)We may want to inspe
t this in more detail and in parti
ular we may be interestedin the values of the variables x and y in the various intermediate states. Tofa
ilitate this we use the fun
tion> show seq fv l = lay (map show
onfig l)> where> show
onfig (Final s) => "final state:\n"++lay (map (show val s) fv)> show
onfig (Inter ss s) => show ss++"\n"++lay (map (show val s) fv)> show val s x = " s("++x++")="++shownum (s x)The fun
tion
all show seq ["x","y"℄ fa
 seq will for ea
h
on�guration in thederivation sequen
e fa
 seq list the statement part and the values of x and y inthe state part.The �nal state of the derivation sequen
e
an be obtained from> s fa
' = s sos fa
torial s initand the value obtained for y is obtained by exe
uting s fa
' "y". 2Exer
ise C.5 Extend the de�nition of stm and sos stm to in
lude the repeat-
onstru
t. 2C.3 Extensions of WhileThe implementation of the natural semanti
s ofWhile in Se
tion C.1 will now beextended to the pro
edure language Pro
 of Se
tion 2.5. Rather than presentinga fully worked out implementation we shall give detailed instru
tions for how to
onstru
t it. We shall pay spe
ial attention to the semanti
s of Pro
 with stati
s
ope rules for variables as well as pro
edures.

226 C Operational Semanti
s in MirandaExer
ise C.6 The �rst step will be to de�ne the datatypes needed to representthe syntax and the semanti
s of Pro
.� Extend the algebrai
 data type stm with the new forms of statements andde�ne algebrai
 data types de
 V and de
 P for variable de
larations andpro
edure de
larations.� De�ne the algebrai
 type lo
 to be num su
h that lo
ations will be numbers.De�ne the fun
tionnew :: lo
 -> lo
su
h that new in
rements its argument by one.� De�ne algebrai
 types env V and env P
orresponding to EnvV and EnvP.De�ne the fun
tionupd P :: (de
 P, env V, env P) -> env P
orresponding to updP.� Finally, we need a type store
orresponding to Store. There are at leastthree possibilities: One possibility is to de�nelo
' ::= Lo
 lo
 j Nextstore == lo
' -> zas this will
orrespond
losely to the de�nition of Store. Alternatively, onemay identify the spe
ial token `next' with lo
ation 0 and then simply de�nestore == lo
 -> zThe third possibility is to de�nestore == (lo
 -> z, lo
)where the se
ond
omponent
orresponds to the value of `next'.Choose a method that seems appropriate to you. 2Exer
ise C.7 Finally we turn towards the transition systems. We begin by im-plementing the transition system for variable de
larations:� De�ne an algebrai
 data type
onfig D for the
on�gurations of the transi-tion system for variable de
larations.� Then de�ne a fun
tion

C.4 Provably
orre
t implementation 227ns de
 V ::
onfig D ->
onfig D
orresponding to the relation!D.Now we turn to the transition relation for statements:� De�ne an algebrai
 data type
onfig P
orresponding to the
on�gurationshS , stoi and sto of the transition system.� Next de�ne a fun
tionns stm :: (env V, env P) ->
onfig P ->
onfig P
orresponding to the transition relation!.Finally de�ne a fun
tions ns :: stm -> store -> storethat
alls ns stm with appropriately initialized environments. Use the fun
tion onvarious example statements in order to ensure that the implementation works asintended. 2Exer
ise C.8 Modify the implementation above to use dynami
 s
ope rules forvariable de
larations as well as pro
edure de
larations. 2It is more problemati
 to extend the implementation to handle the
onstru
tsof Se
tion 2.4:Exer
ise C.9 Dis
uss how to extend the implementation of the natural semanti
sin Se
tion C.1 to in
orporate the
onstru
ts
onsidered in Se
tion 2.4. 2Exer
ise C.10 Dis
uss how to extend the implementation of the stru
tural oper-ational semanti
s of Se
tion C.2 to in
orporate the
onstru
ts
onsidered in Se
tion2.4. 2C.4 Provably
orre
t implementationRather than presenting a fully worked out Miranda s
ript we shall provide exer-
ises showing how to develop an implementation
orresponding to Chapter 3.Exer
ise C.11 We need some data types to represent the
on�gurations of thema
hine:� De�ne an algebrai
 data type am ins for representing instru
tions and de�nethe type synonym

228 C Operational Semanti
s in Mirandaam
ode == [am ins℄for representing
ode.� De�ne an algebrai
 data type sta
k values representing the elements thatmay be on the evaluation sta
k and de�ne the type synonymsta
k == [sta
k values℄� De�ne a type storage representing the storage.Finally de�neam
onfig == (am
ode, sta
k, storage)for the
on�gurations of AM. 2Exer
ise C.12 We
an then turn to the semanti
s of the ma
hine instru
tions.For this we pro
eed in three stages:� First de�ne a fun
tion am step of typeam step :: am
onfig -> am
onfigimplementing Table 3.1.� We shall also be interested in the
omputation sequen
es of AM so de�ne afun
tionam
omp seq :: am
ode -> storage -> [am
onfig℄that given a sequen
e of instru
tions and an initial storage will
onstru
t the
orresponding
omputation sequen
e.� Finally de�ne a fun
tion run
orresponding to the fun
tionM of Chapter 3.This provides us with an interpreter for AM. What happens if we enter a stu
k
on�guration? 2Exer
ise C.13 Finally, we implement the
ode generation fun
tions:� De�ne fun
tions
orresponding to CA, CB and CS.� De�ne a fun
tion am stm
orresponding to the fun
tion Sam.Apply the
onstru
tion to a
ouple of examples to verify that everything works asexpe
ted. 2Exer
ise C.14 Modify the implementation to use the abstra
t ma
hine AM2 ofExer
ises 3.8 and 3.17 rather than AM. 2

Appendix DDenotational Semanti
s inMirandaIn this appendix we implement the denotational semanti
s of Chapter 4 in Mi-randa and show how similar te
hniques
an be used to implement the stati
program analysis of Chapter 5.We shall need the de�nitions from Appendix B so we begin by in
luding these:> %in
lude "appB"D.1 Dire
t style semanti
sIn the implementation we shall rely on some of the built-in fun
tions ofMiranda.In parti
ular, id is the identity fun
tion and `.' is fun
tion
omposition. Theauxiliary fun
tion
ond is de�ned by>
ond (p, g1, g2) s = g1 s, if p s> = g2 s, if ~p sThe theoreti
al foundation of Miranda is
losely related to the theory developedin Chapter 4 (although it is outside the s
ope of this book to go further intothis). One of the
onsequen
es of this is that the �xed point operation
an beimplemented in a very simple way:> fix ff = ff (fix ff)The fun
tion Sds
an now be implemented by the fun
tion> s ds :: stm -> state -> stateA straightforward rewriting of Table 4.1 gives:229

230 D Denotational Semanti
s in Miranda> s ds (Ass x a) s = update s (a val a s) x> where> update s v x y = v, if x = y> = s y, otherwise> s ds Skip = id> s ds (Comp ss1 ss2) = (s ds ss2) . (s ds ss1)> s ds (If b ss1 ss2) =
ond (b val b, s ds ss1, s ds ss2)> s ds (While b ss) = fix ff> where> ff g =
ond (b val b, g . s ds ss, id)Example D.1 Returning to the fa
torial statement we
an apply its denotationto the initial state s init as follows:> s final = s ds fa
torial s init 2Exer
ise D.2 We may be interested in the various iterands of the �xed point.Rewrite the semanti
 equations above so that ea
h �xed point is unfolded at most ntimes where n is an additional parameter to the fun
tions. Give examples showingthat if the value of n is suÆ
iently large then we get the same result as above. 2Exer
ise D.3 Extend the de�nition above to handle the repeat-
onstru
t. 2D.2 Extensions of WhileIt is fairly straightforward to extend the implementation to handle the pro
edurelanguage and the ex
eption language of Se
tion 4.5.Exer
ise D.4 Modify the above implementation to use environments and storesand extend it to implement the semanti
s of the language Pro
 of Se
tion 4.5. 2Exer
ise D.5 Modify the above implementation to use
ontinuations and extendit to handle the language Ex
 of Se
tion 4.5. 2D.3 Stati
 program analysisRather than presenting a fully worked out Miranda s
ript performing the depen-den
y analysis we shall provide a rather detailed list of instru
tions for how todevelop su
h an implementation.

D.3 Stati
 program analysis 231Exer
ise D.6 The �rst step will be to implement the
omplete latti
es P andPState and the operations on them:� De�ne an algebrai
 data type property representing the set P of propertiesand de�ne a fun
tion p lub
orresponding to tP.� De�ne a type synonym pstate representing the property states. De�nethe spe
ial property states init and lost. De�ne a fun
tion pstate lub
orresponding to tPS. 2Exer
ise D.7 We
an then turn to the semanti
 equations de�ning the analysis:� De�ne the fun
tionsp aexp :: aexp -> pstate -> property
orresponding to PA andp bexp :: bexp -> pstate -> property
orresponding to PB.� De�ne the auxiliary fun
tion
ond P
orresponding to
ondP.� De�ne the fun
tionp stm :: stm -> pstate -> pstate
orresponding to PS of Table 5.2. (You may use the results of Se
tion 5.4for this.) 2Exer
ise D.8 Implement the algorithm of Se
tion 5.2 and apply the implemen-tation to a
ouple of examples to verify that everything works as expe
ted. 2

232 D Denotational Semanti
s in Miranda

Bibliography[1℄ S. Abramsky, C. Hankin: Abstra
t Interpretation of De
larative Languages,Ellis Horwood (1987).[2℄ A. V. Aho, J. E. Hop
roft, J. D. Ullman: Data Stru
tures and Algorithms,Addison{Wesley (1982).[3℄ A. V. Aho, R. Sethi, J. D. Ullman: Compilers: Prin
iples, Te
hniques andTools, Addison{Wesley (1986).[4℄ K. R. Apt: Ten Years of Hoare's Logi
: A Survey | Part 1, ACM Toplas 34 (1981).[5℄ J. W. de Bakker: Mathemati
al Theory of Program Corre
tness, Prenti
e-Hall(1980).[6℄ D. Cl�ement, J. Despeyroux, T. Despeyroux, G. Kahn: A simple appli
ativelanguage: Mini-ML, Pro
eedings of the 1986 ACM Conferen
e on Lisp andFun
tional Programming (1986).[7℄ J. Despeyroux: Proof of translation in natural semanti
s, Pro
eedings ofSymposium on Logi
 in Computer S
ien
e, Cambridge, Massa
husetts, USA(1986).[8℄ M. J. C. Gordon: The Denotational Des
ription of Programming Languages,An Introdu
tion, Springer-Verlag (1979).[9℄ M. Hennessy: The Semanti
s of Programming Languages: An ElementaryIntrodu
tion using Stru
tural Operational Semanti
s, Wiley (1991).[10℄ C. B. Jones: Software Development: A Rigorous Approa
h, Prenti
e-Hall(1980).[11℄ J. Loe
kx, K. Sieber: The Foundations of Program Veri�
ation, Wiley{Teubner Series in Computer S
ien
e (1984).[12℄ H. R. Nielson: A Hoare-like proof system for run-time analysis of programs,S
ien
e of Computer Programming, vol 9 (1987).233

234 Bibliography[13℄ F. Nielson, H. R. Nielson: Two-level semanti
s and
ode generation, Theoret-i
al Computer S
ien
e, vol 56 (1988).[14℄ G. D. Plotkin: A Stru
tural approa
h to Operational Semanti
s, Le
ture notes,DAIMI FN-19, Aarhus University, Denmark (1981, reprinted 1991).[15℄ G. D. Plotkin: An operational semanti
s for CSP, in: Formal Des
ription ofProgramming Con
epts II, Pro
eedings of TC-2 Work. Conf. (ed. D. Bj�rner),North{Holland (1982).[16℄ D. A. S
hmidt: Denotational Semanti
s: a Methodology for Language Devel-opment, Allyn & Ba
on, In
. (1986).[17℄ J. E. Stoy: Denotational Semanti
s: The S
ott{Stra
hey Approa
h to Pro-gramming Language Theory, MIT Press (1977).

Index of Symbols(P, vP), 136(PState, vPS), 140(PState ! PState, v), 148(State ,! State, v), 93(D , vD), 95� � �[� � �7�!� � �℄, 51� � �[� � �7!� � �℄, 16, 17, 177, 214� � �� � � �rel � � �, 137, 138� � �` � � �! � � �, 54, 58Æ, 214�, 215,!, 213!, 213�, 64), 32!, 20!t, 202!D, 51, 58!Aexp, 31!Bexp, 32t, 136F, 97, 99, 136, 140, 148?, 95v, 95, 136, 140, 148w, 95`, 180, 192, 203j=, 184, 191, 203:, 177_, 177^, 177), 177f P g S f Q g, 176f P g S f + Q g, 191f P g S f e + Q g, 202

f n, 104R�, 215R+, 215A, 12B, 14CA, 70CB, 70CS, 71DPds, 121DVds, 120M, 68N , 9O(g), 214P, 213PA, 142PAX , 161PB, 142PBX , 161PS, 144PSX , 161Sam, 72S
s, 130S 0
s, 128Sds, 85, 122S 0ds, 119Sns, 31Ssos, 39T A, 201T B, 201AM, 63Aexp, 7AexpX , 161Bexp, 7235

236 Index of SymbolsBexpX , 161Blo
k, 51Code, 64Cont, 127De
P, 53, 117De
V, 51, 117EnvE, 130EnvP, 54, 56, 58, 121EnvV, 57, 118Ex
, 126Ex
eption, 126�, 213Lo
, 57, 118N, 213Num, 7P, 136PState, 137Pname, 53, 117Pro
, 52, 117Sta
k, 64State, 12StateX , 161Stm, 7StmX , 161Store, 57, 118T, 213tt, 213Var, 7While, 6Z, 213a, 7b, 7
, 64, 127DP , 53, 117DV , 51, 117e, 64, 126envE, 130envP , 54, 121

envV , 57, 118n, 7P , 176p, 53, 117, 136ps, 137S , 7s, 12sto, 57, 118Q , 176x , 7d?, 135, 136init, 141initX , 163lost, 141ok, 135
ond, 87, 119
ondP, 145DV, 51extendX , 161FIX, 88, 97, 104, 146FV, 15, 16, 160graph, 214I, 215Ip, 215IX , 215id, 214lookup, 118new, 57, 118next, 57, 118OK, 137on-tra
k, 137updP, 54, 56, 58wlp, 186rel, 136{138undef, 214

Indexabort-
onstru
t, 44abstra
t ma
hine, 63abstra
t syntax, 7additive fun
tion, 163admissible predi
ate, 173anti-symmetri
 relation, 95arithmeti
 expression, 7analysis, 142exe
ution time, 201semanti
s, 12translation, 70assert-
onstru
t, 46assertion, 175axiom, 20axiomati
 semanti
s, 178basis element, 7begin-
onstru
t, 51, 117, 126bisimulation relation, 81boolean expression, 7analysis, 142exe
ution time, 201semanti
s, 14translation, 70
all-
onstru
t, 53, 117, 197
all-by-value parameter, 60, 126

po, 99
hain, 97
hain
omplete partially ordered set,99
ode generation, 69
omplete latti
e, 99
ompleteness, 183

of partial
orre
tness inferen
e sys-tem, 187of total
orre
tness inferen
e sys-tem, 196
omposite element, 7
ompositional de�nition, 11
omputation sequen
e, 66
on
rete syntax, 7
on�guration, 216�nal, 216stu
k, 216terminal, 216
onstant propagation, 133
ontinuation, 127
ontinuation style semanti
s, 127
ontinuous fun
tion, 103
orre
t implementation, 73de
lared variable, 51denotational semanti
s, 85
ontinuation style, 127dire
t style, 85dependen
y analysis, 134derivation sequen
e, 33derivation tree, 22dete
tion of signs analysis, 133deterministi
 semanti
s, 28, 38, 68dire
t style semanti
s, 85dubious, 135dynami
 s
ope, 53equivalen
e relation, 141evaluation sta
k, 64ex
eption, 126ex
eption environment, 130237

238 Indexexpressiveness, 191extensional approa
h, 177�xed point, 87least, 97, 104requirements, 92, 97�xed point indu
tion, 173�xed point theory, 106
ow of
ontrol, 137for-
onstru
t, 28, 36, 43, 72, 111, 117,151, 182free variable, 15, 16, 160fun
tion
omposition, 214fun
tional dependen
y, 134graph of a fun
tion, 214handle-
onstru
t, 126identity fun
tion, 214identity relation, 215indu
tion, 10�xed point, 173on the length of
omputation se-quen
es, 67on the length of derivation sequen
es,37on the shape of derivation trees,28on the shape of inferen
e trees,183stru
tural, 11inferen
e system, 178for exe
ution time, 200for partial
orre
tness, 178for total
orre
tness, 191inferen
e tree, 180inje
tive fun
tion, 214input variable, 134instru
tions, 64intensional approa
h, 177, 190invariant, 179, 192Kripke-relation, 141

least element, 95least �xed point, 97, 104least upper bound, 97lo
al variable, 51lo
ation, 57, 118logi
al variable, 176looping
omputation sequen
e, 66looping exe
ution, 25, 36monotone fun
tion, 100mutual re
ursive pro
edure, 60natural semanti
s, 20non-determinism, 46, 197non-re
ursive pro
edure, 56, 122, 197number, 9numeral, 7, 11or-
onstru
t, 46, 197order of magnitude, 214order of magnitude of exe
ution time,200ordering, 93anti-symmetry, 95on P, 136on PState, 140on PState ! PState, 148on State ,! State, 93re
exivity, 95, 141symmetry, 141transitivity, 95, 141output variable, 134par-
onstru
t, 48parallelism, 48parameterized relation, 141partial
orre
tness, 169, 175axiomati
 semanti
s, 178denotational semanti
s, 172natural semanti
s, 169stru
tural operational semanti
s,172partial fun
tion, 213

Index 239partially ordered set, 95post
ondition, 176pre
ondition, 176predi
ate, 215pro
-
onstru
t, 53, 117, 197pro
edure de
laration, 53, 117, 121pro
edure environment, 54, 56, 58, 121pro
edure name, 53, 117program variable, 176property, 135property state, 137improper, 138proper, 138prote
t-
onstru
t, 50provability, 180in exe
ution time inferen
e system,203in partial
orre
tness inferen
e sys-tem, 180in total
orre
tness inferen
e sys-tem, 192provably equivalen
e, 182raise-
onstru
t, 126random-
onstru
t, 48re
urren
e equation, 205, 207re
ursive pro
edure, 54, 56, 125, 198re
exive ordering, 141re
exive relation, 95re
exive transitive
losure, 215relation, 215relation
omposition, 215repeat-
onstru
t, 28, 30, 36, 39, 43,72, 81, 111, 112, 117, 129, 151,160, 182, 183, 186, 190, 194,196, 208rule, 20rule of
onsequen
e, 180safety of stati
 analysis, 153, 159semanti

lause, 9semanti
 equation, 9semanti
 equivalen
e, 26, 39, 112

semanti
 fun
tion, 9soundness, 183of exe
ution time inferen
e system,208of partial
orre
tness inferen
e sys-tem, 184of total
orre
tness inferen
e sys-tem, 194state, 12statement, 7analysis, 144exe
ution time, 202semanti
s, 31, 39, 85translation, 71stati
 s
ope, 53, 117storage, 64store, 57, 118stri
t fun
tion, 103strongest post
ondition, 187, 190stru
tural indu
tion, 11stru
tural operational semanti
s, 32stu
k
on�guration, 216substitution, 16, 17, 51symmetri
 ordering, 141terminating
omputation sequen
e, 66terminating exe
ution, 25, 36total
orre
tness, 169axiomati
 semanti
s, 191total fun
tion, 213transition relation, 216transition system, 216transitive ordering, 141transitive relation, 95upper bound, 97validity, 184in exe
ution time inferen
e system,203in partial
orre
tness inferen
e sys-tem, 184

240 Indexin total
orre
tness inferen
e sys-tem, 191var-
onstru
t, 51, 117variable, 7variable de
laration, 51, 117, 120variable environment, 57, 118weakest liberal pre
ondition, 187

