Spez. Kapitel aus Softwareentwicklung

Formal Specification and Development of Software

Johannes Kepler Universität, Linz, Austria, 2018
Project

Weighting
50%

Due in

2018-06-14 23:59UTC+01 (Thursday evening) by email to dlightfoot@brookes.ac.uk.

First word of title must be ‘Linz’.

Attach a Microsoft Word (or pdf) document (or zipped equivalent).
You may send a scanned, handwritten document but I shall not be able to give marks if I cannot read it.

What you have to do

Put the title, your name and your student number on the first page of your document.

Give brief explanations of any assumptions you make. If you have any questions about what is required please send email to David Lightfoot at the address above.

Make use of the Zed font. On Windows, copy the file ZED____.TTF into the folder Windows/Fonts (it might be there already because you downloaded a Word file in which I had embedded it). In Microsoft Word use Insert Symbol to put the characters into your document and save your file with the option ‘Embed Truetype fonts’.

Answer both questions. This must be individual work, not group work.

Question 1 – formal specification

A company owns a holiday apartment that it rents out for certain whole weeks of the year (the weeks it makes available are its 'season') to one party of guests per week. We can remain abstract about how a week is defined, perhaps as an ISO calendar week (KW). Each party has a leader (who does not need to be one of the guests), who is responsible for making arrangements, payments and so on, and a total number of guests for that week, which must not exceed the capacity of the apartment.

The company currently uses a computer spreadsheet to record bookings, with one line in the spreadsheet for each booking, but has had some problems (including ‘double booking’) and would like to have a proper computer booking system.

Include brief, narrative, English explanations of each of your schemas.

a)
Explain what constraints you perceive on the system and explain how these might not be readily controlled by a spreadsheet.

3 marks

b)
Write names and descriptions for the basic types that would be needed for a Z specification of the system.

2 marks

c)
Devise a Z schema to describe the state of the booking system including all invariant properties (constraints).

5 marks

d)
Write a schema for an initial starting state and show informally that this state satisfies the invariant properties.

2 marks

e)
Write an operation schema to make a booking for the apartment in a given week, for a given leader and a given number of guests. Explain informally how your initialisation schema maintains the invariant properties of the state.

5 marks

f)
Write a schema that returns the weeks when the apartment is available.

3 marks

g)
Write a schema to cancel the booking for a given week.

5 marks

Total 25 marks

Question 2 – formal program derivation

Read about the” Zune Bricking code” on Guardian web page:

http://www.theguardian.com/technology/blog/2009/jan/01/zune-firmware-mistake
and elsewhere. See references list at end of this document.

Note that the English expression “The Zune's real-time clock stores the time in terms of days and seconds since January 1st, 1980”, in the Guardian report is ambiguous, where the days are concerned. For example: How many days since January 1st, 1980, is January 1st 1980?

This ambiguity can be resolved by the fact that the software was noticed to go wrong just after midnight at the start of December 31, 2008.

Here it is:

year = ORIGINYEAR; /* = 1980 */

while (days > 365) {

if (IsLeapYear(year)) {

if (days > 366) {

days -= 366; year += 1;

}

} else {

days -= 365; year += 1;

}

}

a)
Assuming the existence and availability of correct Spec# methods with specifications:

static bool IsLeapYear(int y)

requires y >= 1980;

ensures result == “year y is a leap year”;

and
static int DaysInMonth(int y, int m)

requires y >= 1980 && 1 <= m && m <= 12;

ensures result == “number of days in month m of year y”;

using DaysInMonth, write the implementation for the method with this specification in Spec#:
static bool IsValidDate(int y, int m, int d)

requires y >= 1980;

result == “y, m, d is a valid date”;
{implementation}
3 marks

b)
Complete the Spec# specification (not implementation) of a method with heading:

static int DaysSince1Jan1980(int year, int month, int day)

requires …;

ensures …;

that need only work where y, m, d constitute a date no earlier than the start of 1980. You may create your own auxiliary functions if you wish (for example DaysInYear).

3 marks

c)
Following the methods taught in the formal-derivation part of the module, derive an implementation of the method DaysSince1Jan1980 and annotate it with suitable loop invariants to show its partial correctness.

Hint: You will find it easiest to implement this in two parts: firstly summing the days in the whole years since 1980 and then the days since the start of year y.
Big hint: do not try to do this by writing the program first and then trying to prove it correct; that is much more difficult than deriving the implementation hand-in-hand with showing its correctness.
You may use material from the module’s formal-derivation lectures without acknowledgement.

Requirement: you must not use break, continue, return, goto or any other “crypto-goto” statements in any of your implementations in this work! They are not necessary and they defy the ideas of structured programming and make formal proof of your implementation very difficult.

4 marks

d)
Identify a suitable bound function for each loop in your method and explain your choice.

2 marks

e)
Augment the annotation of your implementation to show its total correctness.

2 marks

f)
Derive a Spec# implementation to be the inverse operation to DaysSince1Jan1980:

void DaysBackToDate(int days; out int y, out int m, out int d)

requires days > 0;

ensures IsValidDate(y, m, d) && days == DaysSince1Jan1980(y, m, d);

including invariants that show it to be partially correct.

Note: an out parameter in C# is like a var parameter in Pascal. It requires the actual parameter to be a variable and it carries a value out of the method through the parameter.

5 marks

g)
Identify suitable bound functions and augment the annotation of your implementation to show its total correctness.

2 marks

h)
Study the some of the many posts about the Zune ‘bricking code’. Criticise them where you think they are wrong or poorly expressed or where the ‘corrections’ offered are either wrong or messy.

2 marks

i)
Devise your own explanation of what is wrong with the Zune code, making reference to the ideas of formal derivation.

2 marks

Total 25 marks

References

http://techcrunch.com/2008/12/31/zune-bug-explained-in-detail/

http://www.zuneboards.com/forums/showthread.php?t=38143

http://bit-player.org/2009/the-zune-bug

http://en.wikipedia.org/wiki/Zune_30

http://bits.blogs.nytimes.com/2008/12/31/the-day-microsoft-zunes-stood-still/?hp&_r=0

http://www.informationweek.com/personal-tech/digital-audio/microsoft-scrambling-to-thaw-zune-freeze/212700344?subSection=News

http://anythingbutipod.com/2009/01/zune-bug-actually-a-freescale-bug-affecting-toshiba-gigabeats-too/

http://pastie.org/349916

http://online.wsj.com/news/articles/SB123074469238845927

http://latimesblogs.latimes.com/technology/2008/12/zune-30-shutdow.html

http://www.crn.com/blogs-op-ed/the-channel-wire/212700322/the-day-zune-music-died.htm

Hints

Resist the temptation to just write the program informally, or get it from an external source. It is very much harder to prove an existing program correct than to derive a program hand in hand with proving it correct.

Rise4Fun

You might like to try this out in Rise4Fun: http://rise4fun.com/SpecSharp but this is not obligatory. Paste the result into your report if you do. You use Rise4Fun Spec# by pasting the text of your method into a skeleton class on the web page.
Steps

· specify in form of pre- and post-condition;

· find suitable loop invariant;

· determine suitable guard;

· determine initialisation that establishes the invariant;

· determine body that maintains invariant;

· show that invariant conjoined with negation of guard implies post-condition;

· find bound (variant);

· use bound to prove termination.

Template for a loop

pre

initialisation

invariant

while guard do
 invariant (guard (bound = B (B > 0

 body

 invariant (bound < B

end

invariant ((guard (post

Example of Spec#:

static bool Match(int []! a, int []! pat, int pos)

 requires pat.Length <= a.Length && 0 <= pos && pos < a.Length - pat.Length;

 ensures result == forall{int k in (0: pat.Length); a[pos+k] == pat[k]};

 { int i = 0; int bound;

 while (i < pat.Length && a[pos + i] == pat[i])

 invariant forall{int k in (0: i); a[pos+k] == pat[k]};

 {

 assert pat.Length - i > 0; bound = pat.Length - i;

 i++;

 assert pat.Length - i < bound;

 }

 return i >= pat.Length;

 }

D Lightfoot
6 of 6
2018-05-30

