
JOHANNES
KEPLER
UNIVERSITÄT
LINZ

Institut für Praktische Informatik
(Systemsoftware)

Adding Static Single Assignment Form
and a Graph Coloring Register Allocator
to the Java Hotspot™ Client Compiler

Hanspeter Mössenböck

Report 15
November 2000

- 2 -

Abstract
This report describes the work that I performed during my sabbatical in the Java Hotspot™ group at
Sun Microsystems in Cupertino between June and August 2000. The goal was to find out how much
effort it was to augment the Java Hotspot™ Client Compiler with Static Single Assignment (SSA)
Form and with a Graph Coloring Register Allocator. SSA form not only simplifies register allocation
but also helps performing optimizations such as common subexpression elimination, loop-invariant
code motion or instruction scheduling.

I implemented a prototype compiler that creates a control flow graph (CFG), transforms the
intermediate representation (IR) of the program into SSA form and does register allocation with graph
coloring. The code generator is still missing. On the basis of this work, the Hotspot team should be able
to decide whether or not it is worth adding SSA form and register allocation to the client compiler.

Throughout this report the term current compiler refers to the Hotspot™ Client Compiler
[GrMi00] at the time when my work began. The term new compiler refers to our prototype compiler.

Contents
1. The Control Flow Graph (CFG).. 3

1.1 Building the Control Flow Graph ... 3
1.2 Finding Loop Headers ... 4
1.3 Building the Dominator Tree... 4
1.4 Eliminating Dead Blocks.. 4

2. Static Single Assignment Form (SSA Form) ... 5
2.1 State Arrays... 5
2.2 Merging State Arrays – Phi Functions... 6
2.3 Phi Functions in Loop Headers.. 7
2.4 Elimination of Redundant Phi Functions ... 8
2.5 Implementation of Merging .. 8
2.6 HiWord and Local Instructions.. 9
2.7 Type Analysis .. 9
2.8 Generating Loads for Parameters ... 11

3. Register Allocation .. 12
3.1 Live Range Analysis and the Register Interference Graph... 12

3.1.1 The Basic Algorithm ... 12
3.1.2 Live Range Analysis in the Presence of Branches.. 13
3.1.3 Live Range Analysis in the Presence of Loops.. 14

3.2 Special Issues in Live Range Analysis .. 14
3.2.1 Handling Phi Functions.. 14
3.2.2 Handling Constants ... 15
3.2.3 Putting Values into Specific Registers... 15
3.2.4 Handling Instructions Needing Several Registers .. 15
3.2.5 Handling Values of Type long... 17
3.2.6 Handling Values of Type float and double ... 19

3.3 Joining Values in the Register Interference Graph... 19
3.3.1 Joining Register Moves.. 20
3.3.2 Joining Source and Destination in Two-Address Instructions................................... 20
3.3.3 Joining Phi Operands... 20

3.4 Graph Coloring .. 21
3.4.1 The Basic Algorithm ... 21
3.4.2 Putting Values into Specific Registers... 22
3.4.3 Computing the Weights of Nodes... 23

3.5 Implementation of Register Allocation.. 23
3.6 Interfacing the Code Generator to the Register Allocator .. 24

4. Conclusions.. 25
Appendix A: Files and Classes... 27
Appendix B: Instructions Requiring Special Registers.. 28
Appendix C: Examples... 29

- 3 -

1. The Control Flow Graph (CFG)

The control flow graph is an intermediate representation of a program capturing its instructions and the
control flow between them. Its nodes are basic blocks and its edges are jumps between basic blocks.

There was already a control flow graph in the current compiler, where a block was represented by a list
of instructions starting with a BlockBegin instruction and ending with a BlockEnd instruction (e.g. a Goto)
leading to the BlockBegins of other blocks.

In the new compiler, I added an explicit Block type, which makes it easier to traverse the CFG and also
separates the concepts of blocks and instructions more clearly. Every block can have 0..n successors and
0..m predecessors. It has a pointer to the sequential list of instructions belonging to this block. It also has a
unique block number (block_id) and the bytecode index (bci) of its first instruction. It finally has a dom
field pointing to the immediate dominator of the block. A few more fields that are used for SSA form
generation and register allocation will be introduced later. Fig. 1-1 shows the structure of blocks:

Block
predecessors

successors

BlockBegin

...

...

BlockEnd

Instructions

pred

block_id
bci
dom
first
flags
sux

Fig. 1-1. Blocks in the CFG

In contrast to the current compiler, the new compiler stores not only the successors but also the
predecessors of blocks. This is necessary because we sometimes have to generate register moves and load
instructions in predecessor blocks. The predecessors are also necessary for constructing the dominator tree.

Currently, there is some redundant information in the data structures of the old and the new compiler.
Both a Block and a BlockBegin have a block_id, a bytecode index (bci) and partly the same flags. A
BlockEnd points to the (BlockBegins) of the successor blocks, whereas the sux fields of a Block point to the
successor Blocks. This redundancy should eventually be removed. We left it in the prototype of the new
compiler, because too many other parts of the compiler would have had to be changed otherwise.

1.1 Building the Control Flow Graph

The CFG is built from the Java bytecodes. As in the current compiler, the new compiler first finds the block
leaders (i.e. the beginnings of blocks) by considering the targets and the successor instructions of jumps.
However, it also remembers from where a jump came (the jump bci in the predecessor block). The CFG
construction is implemented in BlockListMaker::set_leaders and in GraphMaker::buildCFG and proceeds
as follows:

• Find block leaders, create blocks and remember predecessor bci's for every block.
• Sort blocks according to bci, so that the block containing a certain bci can be found by binary search.
• From the predecessor bci's compute the predecessor and successor edges of the CFG.
• Find loop headers.
• Remove dead blocks.
• Fill blocks with instructions and build the dominator tree.

All blocks are stored in an array blocks, which can be used for traversing blocks sequentially.

- 4 -

1.2 Finding Loop Headers

Various traversals of the CFG require that loop header blocks are treated in a special way. Thus they have
to be found and marked. For finding the loop headers, the CFG is traversed using the following algorithm
(in pseudocode):

visit(b):
if (!b.visited) {
b.visited = true; b.active = true;
for (all successors s) visit(s);
b.active = false;

} else if (b.active) b.bwd_branches++; // mark b as a loop header;

This algorithm is implemented in GraphMaker::mark. It counts the number of incoming backward
branches. We know that a block b is a loop header if b.bwd_branches > 0. At the same time we also know
the number of incoming forward branches, which is the difference between the number of predecessors and
the number of incoming backward branches. The number of incoming forward branches is needed later
(e.g. for the construction of the dominator tree).

1.3 Building the dominator tree

The dominator tree is needed for inserting blocks into empty branches (see Section 2.8). It is also used for
optimizations. The dominator tree is built such that there is a dom pointer from every block to its parent
block. This allows us to store an n-ary tree with just a single pointer per block.

In order to save graph traversals the generation of the dominator tree is combined with the process of
filling blocks with instructions (GraphMaker::fill_block). The traversal algorithm is based on a DFS, where
the sons of a block b are visited only when all forward branches to b have been traversed. Here is the
algorithm in pseudocode:

 visit(b, pred):
b.ref--;
if (b.dom == null) b.dom = pred; else b.dom = common_dom(b.dom, pred);
if (b.ref == b.bwd_branches)
for (all successors s) visit (s, b);

pred is the predecessor of b. b.ref is initialized with the number of predecessors in every block. It is
decreased with every visit, and when it reaches the number of incoming backward branches, we know that
all forward branches to this block have already been traversed, so it is safe to proceed to the sons of this
block.

During the first visit of a block b, its dom pointer is set to its predecessor. At all further visits the dom
pointer is recomputed as the nearest common dominator of b.dom and pred. This can easily be computed by
traversing the dom chain starting at b.dom and marking every visited block. Then we traverse the dom chain
starting at pred. The first marked block that we encounter on this way is the nearest common dominator
(see GraphMaker::common_dom).

1.4 Eliminating Dead Blocks

The current version of javac may generate dead code. For example, when a jump leads to another jump, this
indirection is transformed into a direct jump, possibly leaving the other jump as dead code. Dead blocks are
eliminated by marking all used blocks (during loop header analysis) and then deleting all unmarked blocks.

- 5 -

2. Static Single Assignment Form (SSA Form)

SSA form is an intermediate representation of IR instructions, which simplifies many optimizations as well
as register allocation. Its basic idea is that for every variable in a program there should be just one point
where this variable is assigned a value. If there are multiple assignments to a variable in the original
program, the program is transformed so that every assignment creates a new variable, and this value is used
in all subsequent instructions up to the next assignment. As a consequence of this transformation, if two
variables have the same name, we can be sure that they also contain the same value, because they have
been assigned at the same place.

An algorithm for creating SSA form was given in Cytr91. We used a different algorithm based on the
abstract interpretation of the bytecodes. This algorithm seems to be simpler although it may generate
redundant phi functions which have to be eliminated later. It seems also better applicable to the situation
that we are compiling from bytecodes and not from source code. A basic form of this algorithm was already
implemented in the current compiler, but it was restricted to single blocks, while we apply it to the whole
CFG.

2.1 State Arrays

In Java every local variable has an index which is its address on the stack. To keep track of the most recent
assignment to every variable, we use a state array, where the i-th element points to the instruction where
the variable with index i got its most recent value. Actually this is not a store instruction (since stores are
eliminated in the IR) but the instruction that produced the value on the right-hand side of the assignment.

While the IR instructions are generated, a state array locals is carried along. If an instruction creates a
value for variable i, a pointer to this instruction is stored in locals[i]. If an instruction uses a variable j as an
operand, this operand is replaced by locals[j], i.e. by a pointer to the instruction where this value was
created. Fig.2-1 shows a piece of source code, its bytecodes, the generated IR, and the contents of the state
array after every IR instruction.

source code bytecodes generated IR locals

void f(int n,int m) iload_0 i10: L0 // load n (i10, ---, ---, ---)
{ int i, j; iconst_1 i11: 1 // load 1 (i10, ---, ---, ---)
 i = n + 1; iadd i12: i10+i11 // i = n + 1 (i10, ---, i12, ---)
 j = m - n; istore_2 i13: L1 // load m (i10, i13, i12, ---)
} iload_1 i14: i13-i10 // j = m - n (i10, i13, i12, i14)
 iload_0
 isub
 istore_3

Fig. 2-1. IR for a simple statement sequence and the corresponding state array locals

At the end of the block, the state array contains pointers to the instructions where the most recent values of
all variables were set (Fig.2-2).

i10: L0
i11: 1
i12: i10+i11
i13: L1
i14: i13-i10

n m i j
locals

Fig.2-2. A state array points to the instructions where the current values of variables were set

A state array also keeps track of values that remain on the Java expression stack at the end of a block (e.g.
in conditional expressions). Thus the state array consists actually of two arrays: locals and stack, but what
we describe for the locals array in the following sections, applies also to the stack array. Both the locals
array and the stack array are implemented in the class ValueStack, so state arrays are ValueStack objects.

- 6 -

2.2 Merging State Arrays -- Phi Functions

When a block b has a single predecessor, the state array of this predecessor becomes the initial state array
of b, and is propagated through the instructions of b. If b has two ore more predecessors, however, there are
two or more state arrays flowing into the block, which have to be merged before a single state array can
continue to flow through b.

If two distinct values i1 and i2 of a variable i flow together at a block, they have to be merged into a
so-called φ-function (phi function) at the beginning of this block as shown in Fig. 2-3. The left-hand side of
this phi function is the value of i which flows from there.

i1 = ... i2 = ...

i3 = (i1, i2)φ

i1 i2

Fig. 2-3. Two values are merged into a phi function

A phi function has as many operands as there are incoming branches into the block to which it belongs. The
meaning of a phi function i3 = φ(i1, i2) (also written as i3 = [i1, i2]) is: If we came over the first branch, the
current value of i is i1; if we came over the second branch, it is i2. Phi functions are eliminated before code
generation (see Section 3.3), since there is no machine instruction for them.

What is shown for a single value in Fig. 2-3 can be applied to a whole state array element by element.
If two state arrays a1 and a2 flow together, a new state array a3 is created, and a phi function is generated
in a3[i] if a1[i] and a2[i] differ, otherwise a3[i] = a1[i] = a2[i]. Fig.2-4 shows all possible cases in which
elements of a state array can be merged giving a new state array.

a b

c d

a e

g

f

a

b fe

c d g

a ... ordinary instruction

c
... phi function

a1 a2

a3

Fig.2-4. Merging state arrays that flow into a block

Fig. 2-5 shows an example of an if statement and its corresponding IR. There are four blocks B0 to B3. B2
is the join block of the if statement and holds a state array with three elements for the variables n, i, and j,
respectively. Since different values of i and j flow together at B2, the state array contains phi functions for i
and j, each having two operands, because B2 has two predecessors. The phi function i20, for example says
that if we came from B1 the value of i is i14 (i.e. 1), if we came from B0, the value of i is i18 (i.e. 2). There
is no phi function for n since the same value of n flows into B2 from both predecessors. Note that when i
and j are used in instruction i22, the phi function values i20 and i21 are used for i and j, respectively.

- 7 -

source code IR

int foo(int n) { B3 i11 L0
 int i, j; i12 0
 if (n > 0) { if i11 <= i12 then B0 else B1
 i = 1; j = 2;
 } else { B1 i14 1
 j = 1; i = 2; i15 2
 } goto B2
 return i - j;
} B0 i17 1
 i18 2
 goto B2

 B2 ------------------
 0: i11 // n
 1: i20 = [i14, i18] // i
 2: i21 = [i15, i17] // j

 i22 i20 - i21
 ireturn i22

Fig. 2-5. IR for an if statement

2.3 Phi Functions in Loop Headers

Loop headers are blocks that have at least 1 incoming backward branch and at least 2 predecessors so they
need phi functions for variables that have different values in incoming branches. A special problem in loop
headers is that the values flowing in from a backward branch are only known when the loop body has
already been processed. If a phi function for some variable i has to be generated because of a value flowing
in from a backward branch, all uses of i in the loop have to be renamed to point to this new phi function.

In order to avoid renaming of variables, we generate phi functions in loop headers for all variables in
advance. If it turns out that a phi function was not needed, we eliminate it later. This seemed to be simpler
than renaming variables and avoids having to maintain def-use lists.

Fig.2-6 shows a loop and its phi functions, assuming that there are only two local variables x and y. At
the beginning of the loop header the phi functions x2 and y2 have been inserted. When x is used in the loop,
it is the value x2 that is used there. x is assigned a new value in the loop which flows back as the value x3 to
the phi function x2. As one can see, y does not get a new value in the loop, so the value flowing back into
the phi function y2 is y2 again. This is an indication that the phi function for y2 is redundant and can be
eliminated.

x2 = (x1, x3)
y2 = (y1, y2)

x1 = ...
y1 = ...

... = ... x2 ...
x3 = ...

φ
φ

Fig. 2-6. Phi functions in a loop header

Fig.2-7 shows a more complete example of a while statement and its translation to IR. There are phi
functions for all three variables (n, i, j) generated in the loop header prophylactically. Since n is never set in
the loop, its phi function is redundant and can be replaced by the value that flew into the loop. But because

- 8 -

n was also not set before the loop, we have to generate a load instruction (L0) in the dominator of the loop
header. Generating load instructions is described in more detail in Section 2.8. The question mark in the phi
function i14 denotes a still undefined value (a Local value, as described in Section 2.6). Since the phi
function i14 is redundant it is replaced by the inserted load instruction for n (alias i22).

source code IR

int foo(int n) { B3 i11 0 // j = 0
 int i, j; i22 L0 // load n
 j = 0; goto B0
 for (i=0; i<n; i++)
 j = j + i; B1 i18 i16 + i15 // j = j + i
 return j; i19 1
} i20 i15 + i19 // i = i + 1
 goto B0

 B0 ------------------
 0: i14 = [?, i14] alias i22 // n
 1: i15 = [i11, i20] // i
 2: i16 = [i11, i18] // j

 if i15 < i22 then B1 else B2

 B2 ireturn i16 // return j

Fig. 2-7. IR for a while statement

2.4 Elimination of Redundant Phi Functions

It may turn out that a phi function was unnecessarily generated in which case it can be eliminated. There
are two cases in which a phi function becomes redundant. Phi functions of the form

x = [y, x, x, ..., x]

(in which all but one operands equal the left-hand side) can be replaced by y. Such phi functions can appear
in loop headers if a variable is not modified in the loop. The other form of redundant phi functions is

x = [x, x, ..., x]

(in which all operands are equal and are the same as the left-hand side). These phi functions can be replaced
by x. They can appear in the join nodes of if and switch statements, if one or more operands were different
from x initially but have been replaced by x due to eliminated phi functions further up in the CFG.

As soon as all branches into a node have been traversed, the phi functions of this node are committed,
i.e. checked for the above two patterns. If one of them occurs, the phi function is virtually deleted by setting
its field subst to the instruction that should substitute it. The compiler already uses this substitution
mechanism for other purposes so that a single pass over all instructions will finally replace all references to
virtually deleted instruction by their substitution. An example of a deleted phi function is i14 in Fig.2-7.
This phi function is substituted by i22.

2.5 Implementation of Merging

For phi functions we introduced the new instruction kind PhiFun. The merging of state arrays is
implemented in GraphMaker::merge which is called from GraphMaker::fill_block. It is based on the
following ideas:

- 9 -

• If a block has only one predecessor, no merge is necessary and no state array is stored for this block.
• If a block with at least 2 predecessors is visited for the first time the incoming state array is stored in

this block. If it is visited again, the new state array is compared with the stored state array element by
element, and phi functions are generated or updated as described in Fig.2-4.

• The successors of a block are only visited after all forward branches to this block have been traversed.
This makes sure that all necessary phi functions have already been generated before proceeding to the
successors.

Care has been taken to generate as few state arrays as possible. If a block b has n successors, only n-1 state
arrays are generated. The n-th successor receives the state array that was built up during the traversal of b.

When all incoming branches of a block have been traversed the phi functions of this block are
committed (GraphMaker::commit_phi) and redundant phi functions are eliminated (GraphMaker::simpli-
fy0). At the time when a phi function x is committed, however, it may have operands which are still
uncommitted phi functions. If those get eliminated later, the phi function x may also become deletable.
Since this is not decidable here, all phi functions are rechecked after the whole CFG has been built
(GraphMaker::delete_redundant_phis and GraphMaker::simplify). Nevertheless, it seems to be a good idea
to try to eliminate redundant phi functions as soon as possible, because this will avoid unnecessary creation
of other redundant phi functions.

2.6 HiWord and Local Instructions

Most variables in Java occupy a single word, except variables of type long and double, which take 2 words.
If a variable with index i takes 2 words, it also takes 2 slots in the state array: slot i pointing to the
instruction where this value was set, and slot i+1 containing a so-called HiWord instruction, which is
mainly used for making sure that such slots are not inadvertently used for other purposes. If the variable i
has not yet been assigned to, slot i of the state array holds a pointer to a so-called Local instruction,
denoting an uninitialized local variable (or parameter).

void foo (int x) {
 long y;
 int z;
 y = 1;
 z = 2;
 ...
}

1 2 3 4

(x) (y) (z)

Local HiWord

state array

Fig. 2-8. Typical contents of a state array

Fig. 2-8 shows the contents of the state array after the assignment to z. The parameter x has not been
assigned yet, therefore its array slot 1 points to a Local instruction. Slot 2 points to the instruction where y
got its value. Since y is of type long, it occupies two slots, and slot 3 points to a HiWord. Finally, slot 4
points to the instruction where z got its value.

2.7 Type Analysis

When the compilation of a method is started, we only know the number of words needed for its local
variables (method.max_locals), but we do not know the types of the individual variables. Yet this
knowledge is necessary, in order to initialize the state array appropriately, i.e. to reserve 2 slots for long and
double variables, and to set the right types in the Local instructions, with which all slots except HiWords
are initialized.

- 10 -

As a solution to this problem, we do type analysis during the parsing of the bytecodes, i.e. when we
split the bytecode stream into basic blocks. Since every variable is eventually loaded or stored, and since
load and store instructions are typed in Java, we can derive the variable types from the load and store
instructions.

Another unpleasant problem is, that there may be variables with the same index but with different
types in Java. Since variables may be declared in inner blocks, and since parallel blocks may declare
variables of different types, the program

void foo() {
int x;
if (...) {
long y;
...

} else {
int z;
...

}
}

has both y and z at index 1, but z has type int and needs just one slot, while y has type long and needs 2
slots. We solve this problem by assigning distinct indexes to overlapping variables. In the above method, x
stays at index 0, y gets index 1 (occupying 2 slots) and z gets index 3. Thus, there is only one variable at
every index in the state array. Of course this can cause the state array to grow.

For reassigning indexes to variables we use a matrix loc in addition to the state array. loc has one line
for every possible variable type (int, long, float, double, object). If a variable is of type t and has originally
index i, loc[t, i] contains the new index of this variable. Fig.2-9 shows the contents of the state array and of
loc for the above method foo.

0 1 2 3

state

loc

x y
HiW

z

int
long
float
double
object

0
1
3

Fig. 2-9. Data structures for reassigning variable indexes

The variable y is of type long and has originally index 1, so its new index is indicated by loc[long, 1],
which is again 1. The variable z is of type int and has originally also index 1. Its new index is loc[int, 1],
which is 3.

The mapping is implemented in class LocalMap, which has essentially 2 methods, put and get. put(t, i)
is invoked for every load or store bytecode for a variable with type t and index i (BlockListmaker::
set_leaders). If this was the first load or store instruction for index i (state[i] == null), put creates a new
Local instruction of type t, stores it in state[i], and lets loc[t, i] point to i. If there was already a load or store
instruction for index i (state[i] != null), put obtains a new index j at the end of the state array, creates a
Local instruction of type t for state[j], and lets loc[t, i] point to j.

The method get is called when the IR instructions are generated from the bytecodes. Every time a load
or store instruction for a variable of type t and index i is encountered (GraphMaker::load_local and
GraphMaker::store_local), get(t, i) provides the new index by returning loc[t, i].

All slots in the state array that were not assigned Local or Hiword instructions are finally assigned a
Local instruction of type unknownType. Such slots may occur, when a variable or parameter was declared
but not used. Most Java compilers will report this as an error, but the program should also be compilable if
they do not.

- 11 -

After type analysis, a state array has been built, which contains a Local instruction with the appropriate
type at the appropriate index for every variable of the method. This array is used as the initial state array in
the construction of SSA form, and is passed to GraphMaker::build_CFG.

2.8 Generating Loads for Parameters

Every local variable has to be assigned before it is used, so the using instructions refer to the instruction
where the most recent value of this variable was set. For parameters, however, things are different.
Parameter values are passed by the caller, so the using instructions cannot reference a value-assigning
instruction in the same method. Therefore we insert LoadLocal instructions for parameters immediately
before they are used for the first time in a method (GraphMaker::load_local). The using instructions can
then reference this LoadLocal instruction. Whether a parameter is still unassigned can be recognized by the
fact if its element in the state array points to a Local instruction (see Section 2.6).

During code generation, a LoadLocal instruction has to be translated into a load of the respective
parameter into the register denoted by the LoadLocal. If parameters are already passed in registers, register
allocation should try to map the LoadLocal instruction to the register in which the parameter is passed; if
this is possible, code generation can ignore the LoadLocal, otherwise a register move has to occur.

If the i-th operand of a phi function in a block b points to a Local instruction, we have to generate a
LoadLocal at the end of the i-th predecessor of b. This can be seen in Fig.2-10, where the second phi
function in block B0 would have had a Local as its first operand. Therefore a LoadLocal was generated in
B5, and the phi function i19 references it.

source code IR

int foo(int n, int m) { B2 i12 L0
 if (n < 0) { i13 0
 n = 0; m = 0; 14 if i12 >= i13 then B5 else B1
 }
 return n + m; B5 i25 L1 // generated LoadLocal
} 24 goto B0

 B1 i15 0
 17 goto B0

 B0 ------------------
 0: i18 = [i12, i15] // n
 1: i19 = [i25, i15] // m (originally i19 = [?, i15])

 i20 i19 + i18
 i22 ireturn i20

Fig. 2-10. Insertion of a LoadLocal instruction in B5

Note that B5 (the else branch of the if statement) had to be generated just to place the LoadLocal
instruction in it. In general, if the phi function is in block b and the LoadLocal instruction should go into a
predecessor block pred, a block has to be inserted between b and pred if
• pred = b.dom (the immediate dominator of b) and
• there is some other predecessor pred' ≠ pred of b that is not dominated by b (i.e. the edge between

pred' and b is not a backward branch). See Fig.2-11.

pred

pred'

b

Fig.2-11. pred = b.dom and b does not dominate pred'

- 12 -

3. Register Allocation

Register allocation tries to assign registers to all variables and intermediate values in a method. Constraints
are the number of available registers and the fact that two values that are live at the same time cannot reside
in the same register. We also have to take into account that certain instructions require their operands to be
in special registers.

We start by assuming that we have an unlimited number of virtual registers. Every instruction that
produces a value is assigned a new virtual register that holds this value (a virtual register corresponds to the
instruction number, e.g. register 10 for i10 in Fig.2-1). Next, we determine the live ranges of all values, i.e.
the IR part between the point where a value was created and the point where it was used for the last time.
Then we build the Register Interference Graph (RIG), whose nodes are the live ranges, and there is an edge
between two nodes if the corresponding live ranges overlap. Finally, the RIG is colored such that adjacent
nodes get different colors. The node color corresponds to the (physical) register number. If we have n
colors (registers) available but the graph can only be colored with m > n colors, then the colors 0 .. n-1
correspond to physical registers, while the colors n .. m-1 correspond to memory locations. Our register
allocator does not generate spill instructions but assumes that every value is either always in a register or
always in memory (from where it has to be loaded when needed). This simplifies the register allocator and
avoids repetitive passes made necessary by spill code generation.

3.1 Live Range Analysis and the Register Interference Graph

3.2.1 The Basic Algorithm

Live ranges are computed by traversing the instructions in reverse order. For every instruction the
following situation occurs

---------- live' = live - {x} + {y, z}
x = y op z

---------- live

where y and z are operands (there can be any number of them), x is the value produced by this instruction
and op is some operation. We start with a set live of values that are live at the end of the instruction and
propagate it backwards. Obviously, x is not live before the instruction, because it was just set here, so we
exclude it from live. However, y and z must have been live before the instruction, otherwise we could not
have used them there. So the set of live values at the beginning of the instruction is live - {x} + {y, z}. This
data flow equation is repeatedly applied to all instructions of a basic block from the last one to the first one.

Note that SSA form considerably simplifies the analysis. If we had not transformed the program to
SSA form, x might also be alive before the instruction, because it was possibly set by a previous
assignment. In SSA form, every assignment creates a new variable so we can be sure that x is not alive
before its assignment.

While we compute the live ranges we can also build the RIG. The live ranges of two values overlap if
one value is alive where the other one is set. Thus we only have to look at the places where values are
created. The steps for processing an instruction x = y op z are thus:

(live is the set of variables alive after the instruction)
1. live = live - {x}
2. generate edges between x and all values in live
3. live = live + {y, z}
(live is the set of variables alive before the instruction)

Fig.3-1 shows an example of how the live ranges and the RIG are computed for the instruction sequence of
Fig.2-1, assuming that no values are alive at the end of the sequence. The example has to be read from
bottom to top.

- 13 -

live = {}
i10 L0 edges:

live = {i10}
i11 1 edges: i11-i10

live = {i10, i11}
i12 i10 + i11 edges: i12-i10

live = {i10}
i13 L1 edges: i13-i10

live = {i10, i13}
i14 i13 - i10 edges:
 live = {}

Fig. 3-1. Computing the live ranges and the RIG for a statement sequence

The RIG resulting from Fig.3-1 is shown in Fig.3-2. It is easy to see that the graph can be colored with two
colors, 0 and 1.

i13

i10

i14

i12i11
0

0

0

0

1

Fig.3-2. The RIG resulting from Fig.3-1

The instruction sequence can thus be written as

r1 = L0
r0 = 1
r0 = r1 + r0
r0 = L1
r0 = r0 - r1

3.2.2 Live Range Analysis in the Presence of Branches

When a CFG contains branches, the live ranges are computed for every block individually starting with the
last block and proceeding to the first block in a postorder traversal. The live set at the end of a branch node
is the union of the live sets at the beginning of its successors, as is shown in Fig.3-3. The live sets within
the basic blocks as well as the edges of the RIG are computed in the same way as shown in Fig.3-1.

live2 live3

live4

live1

live3

live0

live1

live1

live2

∪

Fig.3-3. Live set propagation in the presence of branches

In order to avoid the recomputation of live sets, every block stores the set of values that is live at its
beginning.

- 14 -

3.2.3 Live Range Analysis in the Presence of Loops

The live sets in a loop cannot be computed in a single pass. Looking at Fig.3-4, the values that are live at
the last block of a loop (live0) are the values that are live at the beginning of its successor, i.e. the loop
header (live2). However, live2 has not yet been computed (it is still empty) when it is needed for the first
time, so live0 starts with the empty set and a preliminary version of live2 is computed in a first pass. Then a
second pass of live range analysis is performed, where live2 is not empty any more but contains all values
that were used and not killed in the loop. After this second pass, all live sets in the loop are complete.

live1

live2

live0

live1

Fig.3-4. Live set propagation in the presence of loops

Unfortunately, the number of passes necessary to compute the live sets depends on the nesting level of
loops. A simple loop needs 2 passes. If a loop contains another loop, we need 3 passes. In general, if the
maximum nesting level of loops in a method is n, we need n+2 passes to compute the live sets.

There is a way to restrict the number of passes to 2 irrespective of the loop nesting level. In the first
pass all values that are used and not killed in loops are propagated to the headers of all outer loops. Before
we start pass 2, we can add the live values at a loop header to the live values at all inner loop headers. This
is justified by the observation, that if a value is life in a loop, it is also live in all inner loops. Unfortunately,
this technique cannot be easily applied in the Hotspot compiler, because we have to take into account that
the control flow in a method can be completely unstructured (e.g. when the bytecodes were hand-crafted)
and thus the nesting structure of loops would be difficult to find. Although it could probably be done, it is
so complicated that we refrained from doing it in this version of the compiler. Rather, we iteratively
perform live range analysis until the live sets in the blocks do not change any more. This is safe and can
perhaps be optimized later.

3.2 Special Issues in Live Range Analysis

3.2.1 Handling Phi Functions

A phi function reflects the fact that the control flow came to a block via different branches. When we
perform live range analysis, we have to treat these branches separately. If we have the following sequence
of phi functions

x3 = [x1, x2]
y3 = [y1, y2]
z3 = [z1, z2]

and if live is the set of values alive at the end of this sequence, then the set of values alive at the beginning
of the sequence is either

live - {x3, y3, z3} + {x1, y1, z1}

or

live - {x3, y3, z3} + {x2, y2, z2}

depending on whether we plan to continue to the first or to the second predecessor. The live sets stored in
the blocks are the values that are alive after the phi functions and before the other instruction of this block.

- 15 -

When the live set of block b is requested by its i-th predecessor, the set b.live is propagated through the phi
functions backwards, removing their left-hand sides and adding their i-th operands. At the same time, the
edges of the RIG are computed.

3.2.2 Handling Constant Operands

Many machine instructions are able to take a constant as an immediate operand. It would be a waste of
registers to load constants into registers if they can also be processed as immediate operands. Therefore, if
an IR instruction

x = y op z

can be translated into a machine instruction with z as an immediate operand, and if z is a constant, the data
flow equation is modified to

live' = live - {x} + {y}

Also, the instruction in which the constant z is defined should not produce edges in the RIG. Of course,
constant operands are handled in the same way wherever the occur. For example, an array store instruction

storeIndexed array, index, value

can have both index and value as constants, excluding them from live range analysis if the actual values are
constants.

3.2.3 Putting Values into Specific Registers

Some machines have instructions that require operands to be in specific registers. For example, on the Intel
i486 the first operand of a division must be in eax; the second operand of a shift instruction must be in ecx,
etc. There are also instructions that produce values in specific registers. For example, the i486 places the
remainder of a division into edx. But even on more regular machines there are cases where a value has to
be in a specific register. For example, the parameters of a method have to go into the first k registers. We
therefore have to find a way to tell the register allocator to assign specific registers to certain values.

Values are produced by instructions. Therefore every instruction has a field reg that indicates the
register in which the value of this instruction should be stored. If reg is initialized with -1, the allocator will
assign it an arbitrary free register. If reg is initialized with a value ≥ 0, however, the allocator will not
modify it, but will regard it as the register in which the value of this instruction should be stored. We have
to distinguish two cases:

• Instructions that require an operand in a specific register. If an instruction

x = y op z

requires y to be in a specific register r, it is not a good idea to simply set y.reg to r, because this could
cause conflicts with other instructions that need r as well. Therefore, we introduce a register move
immediately before the instruction so that it becomes

yr = y
x = yr op z

and set yr.reg to r. If we do that with all operands that have to be in specific registers, none of them
will block the register for its whole life. Later we will try to join the registers of y and yr (see Section
3.3) so that in many cases the register move can be eliminated again. For register moves we introduce a
new instruction kind RegMove.

- 16 -

• Instructions that leave their results in specific registers. If an instruction

x = y op z

should leave its result in a specific register r, we set x.reg to r but introduce a register move
immediately after the instruction so that it becomes

xr = y op z
x = xr

This register move makes the specific register free again immediately after it was set. Later we try to
join the registers of x and xr, and in may cases the register move can be eliminated again.

Handling Register Moves

Register moves have to be treated in a special way during live range analysis. For example, if we consider
the following Java program

i = x << d;
j = x >> d;

and its IR

i1 Lx
i2 Ld
i31 := i2 // register move because shift distance must be in register 1
i4 i1 << i31
i51 := i2 // register move because shift distance must be in register 1
i6 i1 >> i51

live range analysis would look as follows (to be read from bottom to top):

i1 Lx
live = {i1}

i2 Ld edges: i2-i1
live = {i1, i2}

i31 := i2 edges: i3-i1, i3-i2
live = {i1, i2, i3}

i4 i1 << i31 edges: i4-i1, i4-i2
live = {i1, i2}

i51 := i2 edges: i5-i1
live = {i1, i5}

i6 i1 >> i51

live = {}

producing the RIG shown in Fig.3-5.

i5 i1 i2 i6

i4

i3

02

1

2

1

0

Fig.3-5. RIG with an interference between i2 and i3

As we can see, there is an interference between i2 and i3, which prevents us from putting these two values
into the same register. Therefore the register move i3 := i2 cannot be eliminated.

- 17 -

The reason for this problem is that i2 is still alive after the register move i3 := i2. However, we should
take our initial intention into account. We introduced the move i3 := i2 just for the purpose that if some
other value needed to go into register 1 and if this other value interfered with i2, i2 should be stored in a
register different from 1. We did not want to introduce an interference between i3 and i2. In other words,
we should not make the left-hand side of a register move interfere with its right-hand side. For a register
move x := y we should rather take the following steps:

(live is the set of variables alive after the instruction)
1. live = live - {x, y}
2. generate edges between x and all values in live
3. live = live + {y }
(live is the set of variables alive before the instruction)

This avoids the edge between i2 and i3 and allows us to put i2, i3 and i5 into register 1, making both
register moves unnecessary.

3.2.4 Handling Instructions Needing Several Registers

Some IR instructions such as NewInstance or CheckCast are translated to multiple machine instructions and
need several temporary registers. These registers should be reserved by the register allocator. Since every
register corresponds to an instruction that provides the value of this register, we have to introduce a new
pseudo instruction Affect, the only purpose of which is to indicate to the allocator, that it should reserve a
specific register (reg ≥ 0) or arbitrary register (reg = -1) at this point.

In the current version of our compiler, we place Affect instructions immediately after the instruction x
that has a need for temporary registers. It would be cleaner, however, to have the Affect instructions as
"arguments" of x. This would make it easier to move x during instruction scheduling. However, since the
number of temporary registers needed by high-level instructions differs on various machines, the IR would
become machine-dependent. One possible solution for this problem is to allow a variable length list of
arguments for all instructions, and to have the back end attach the Affect instructions to the other
instructions.

The Affect instructions have to be treated in a special way during live range analysis, too. If an
instruction has a sequence of Affect instructions, the registers assigned to these Affects should be different
from each other. Therefore we have to introduce interference edges between all instructions of an Affect
sequence.

Another example of using the Affect instruction is when we indicate to the register allocator that an
instruction such as division on the i486 not only places the quotient into eax but also affects edx by placing
the remainder there. It furthermore requires the dividend to be in [edx, eax]. The division x = y / z is
therefore translated into the following IR:

i1 Ly
i2 Lz
i30 := i1 // register move: dividend has to be in register 0 (eax)
i42 affect // division also affects register 2 (edx)
i50 i3 / i2 // division leaves result in register 0 (eax)
i6 := i50 // register move makes eax free again

Appendix B shows a table of registers required by the various bytecode instructions.

3.2.5 Handling Values of Type long

Values of type long need 2 words, i.e. 2 registers. Instructions producing a long result therefore have to be
colored with 2 registers. However, if an instruction corresponds to a node in the RIG, there would be nodes
that had 2 colors, which would complicate the coloring algorithm. Therefore we preferred to stay with the
simple rule that every instruction corresponds to just a single register. For instructions producing long
values we add a HiWord instruction accounting for the second register.

- 18 -

An instruction x producing a long value and its corresponding HiWord instruction y are linked to each
other by

x.next == y (i.e., y immediately follows x)
y.lo_word == x

Requiring that y immediately follows x makes it difficult to move x during instruction scheduling. One
could solve that problem by using a different pointer instead of next, which we did not do in our current
version of the compiler.

There are two kinds of instructions which are not in the regular instruction stream and therefore have
their next fields unused: the PhiFun and the Local instructions. Both of them are stored in state arrays
though and have already a corresponding HiWord as an element of the state array (see Section 2.6). We just
have to link these instructions with their HiWords in the above mentioned way in order to tie them together.

Fig.3-6 shows a method using long values and its translation into IR. One can see that instructions l9,
l13, l17, l20 and l23 are followed by HiWord instructions. At the end of the method there is a register move
of the result into the required registers (r0, r2). These register moves can possibly be eliminated later by
joining the left-hand and right-hand sides (see Section 3.3).

source code IR

long foo(long n, long m) { B0 l9 L0 // load n
 return (n + m) / 2; l10 hi(l9)
} l13 L2 // load m
 l14 hi(l13)
 l17 l9 + l13 // n + m
 l18 hi(l17)
 l20 2L // load 2
 l21 hi(l20)
 l23 l17 / l20 // (n + m) / 2
 l24 hi(l23)
 r0 := l23 // register move to r0,r2
 r2 := l24
 l28 lreturn r0

Fig.3-6. Operations with long values and their translation to IR

Long values have to be treated in a special way during live range analysis. If we consider the long value
operation

a = b op c
d = hi(a)

we have to do the following steps:

(live is the set of variables alive after the HiWord instruction)
1. live = live - {d}
2. generate edges between d and all values in live
3. if b is a long value then live = live + {b.next}

if c is a long value then live = live + {c.next}
4. live = live - {a}
5. generate edges between a and all values in live
6. live = live + {b, c}
(live is the set of variables alive before the instruction)

Phi functions are not in the regular instruction stream, so if they produce long values they cannot be
handled by the above sequence of steps. Rather, a phi function a = [..., b, ...] has to be treated as follows:

- 19 -

(live is the set of variables alive after the phi function)
1. if a is a long value then

live = live - {a.next}
generate edges between a.next and all values in live

2. if b is a long value then live = live + {b.next}
3. live = live - {a}
4. generate edges between a and all values in live
5. live = live + {b}
(live is the set of variables alive before the instruction)

3.2.6 Handling Values of Type float and double

Values of type float or double have to be stored in floating point registers. Since these are different from
integer registers, we would have to build a separate RIG for floating point values and color it
independently.

The current version of our compiler does not do that. Instead, we assume that for floating point values
a simple on demand register allocation will be done by the code generator as it is done in the current
compiler.

3.3 Joining Values in the Register Interference Graph

There are places in a program, where it is desirable to put two or more values into the same register. For
example:

• The left-hand side and the right-hand side of register moves should go into the same register so that the
move can be eliminated.

• All operands of a phi function as well as its left-hand side should go into the same register so that the
phi function can be eliminated.

• On two-address machines such as the Intel i486, an operation x = y op z should have x and y in the
same register.

Putting two values into the same register can be achieved by joining their nodes in the RIG into a single
node (this is also called coalescing). This will reduce the size of the RIG and will assign a single color to
the joined node, i.e. to the two values for which the node stands. Two nodes x and y can only be joined if

• There is no edge between them in the RIG.
• If x.reg ≥ 0 and y.reg ≥ 0 then x.reg and y.reg must be the same.
• After joining the nodes, adjacent nodes must still have different colors (i.e. if their reg values are ≥ 0

they must be different).

If a value b is joined with a value a, the field b.subst is set to a (a becomes a substitute for b), b and all its
edges are removed from the RIG, and the former edges of b are added to the edges of a. After coloring the
RIG, all values i with i.subst != null get i.reg set to i.subst.reg (actually the substitution chain can also be
longer in which case the last node in the chain is the one that was colored). In Fig.3-7 b and c were joined
with a, and d was joined with c. Only a remains in the graph and gets colored. b, c and d get their color
from a.

- 20 -

a

b c

d

join b to a
join c to a
join d to c

subst

RIG edges

Fig. 3-7. Joining four values where a is the value that is going to be colored

3.3.1 Joining Register Moves

If x := y is a register move and x and y can be joined, the code generator can eliminate the move. The only
thing that we have to take care of is that joins of register moves should happen after other joins (i.e. after
joins in phi functions and two-address instructions). The reason is that one join operation can make other
joins impossible, because every join operation makes the RIG denser, i.e. the average number of edges per
node increases and so does the probability that two nodes that are to be joined are connected by an edge.
Joining the operands of register moves is less important than joining other values so we want to give them
lower priority.

During live range analysis we collect pairs of values that are to be joined. After the RIG has been built
we traverse the list and try to join every pair. The list is built such that join pairs of two-address instructions
come before join pairs of register moves. This gives them priority over register moves.

3.3.2 Joining Source and Destination in Two-Address Instructions

If x = y op z is an instruction on a two-address machine, x and y have to be in the same register. Therefore
we add the pair (x, y) to the list of join pairs. If it turns out that x and y cannot be joined we try to swap y
and z if op is commutative and x and z can be joined. If that does not work either, we try to put x and z into
different registers by introducing an egde between them in the RIG. The code generator can then produce
the following code:

x = y
x = x op z

If it is not possible to put x and z into different registers, the code generator will have to use a scratch
register s and produce the following code:

s = y
s = s op z
x = s

3.3.3 Joining Phi Operands

If x = [y, z] is a phi function and x can be joined with both y and z, the code generator can eliminate the phi
function, since the incoming values y and z are in the same register as the outgoing value x.

Phi operands are not entered into the join list, however. Instead we iterate over the state arrays of all
blocks to find the phi functions and join their operands immediately.

If a phi operand for branch i cannot be put into the same register as the left-hand side of the phi
function, a register move has to be generated at the end of the i-th predecessor block. This will move the
value that could not be joined into the correct register, and the phi function can be eliminated again. Fig.3-8
illustrates this process.

- 21 -

x = [y, z]

r1 r1 r2

x = [y, z]

r1 r1 r1

r1 := r2

after generating the movebefore generating the move

Fig.3-8. A register move is generated for every phi operand that is not joinable

In Fig.3-9 we have the situation that a register move has to be generated for the phi operand z but the
corresponding predecessor block is missing. In this case we have to insert an empty block and place the
register move there. This situation is the same as the one described in Section 2.8 in which LoadLocal
instruction had to be generated for phi operands of kind Local.

x = [y, z]

r1 r1 r2

x = [y, z]

r1 r1 r1

r1 := r2

Fig.3-9. A block has to be inserted in order to place the register move

3.4 Graph Coloring

3.4.1 The Basic Algorithm

For coloring the RIG we use the standard coloring algorithm [e.g. Much97] with some adaptations for
handling values that have to go into specific registers. The general idea is as follows: if we have n colors
available, we search for a node with less than n neighbors. If we find such a node, we remove it together
with its edges and color the remaining graph recursively. Then we add the node and its edges again and
assign it a color that is different from the colors of its neighbors. Since there are less than n neighbors there
will always be a color available for this node.

If we cannot find a node with less than n neighbors, we choose the node which has minimal "weight"
(see below), remove it, and color the remaining graph recursively. When we add this node again, all of the
n colors may already be used by its neighbors. In this case we assign it the smallest color greater than n. If a
node has a color greater than n this means that it resides in memory instead of in a register. In general, if we
have n registers but need m > n colors to color the RIG, then the colors 0..n-1 correspond to real registers,
while the colors n..m-1 correspond to memory locations. A stack frame would then consist of m slots (plus
the slots for floating point values), where the first n slots are used as a save area for registers and the
remaining slots are the variables that cannot be kept in registers.

Our simple coloring algorithm does not create spill instructions, i.e. instructions that move values from
registers to memory and back in order to decrease the register pressure. Instead, we divide the set of values
into those which always reside in registers and those which always reside in memory. This may not be
optimal but much simpler and faster than a spilling register allocator. It allows us to do the coloring in a
single pass. On RISC machines, where many registers are available, it should produce good results in most

- 22 -

of the cases. The register moves introduced for values that have to go into special purpose registers (see
Section 3.2) provide some way of live range splitting and reduce the register pressure.

On a CISC machine we keep one register as a scratch register that we do not use for coloring. Most
CISC instructions allow at least one operand to be in memory. The other operand can be loaded into the
scratch register if necessary. On a RISC machine we have to reserve 2 scratch registers for this purpose.

Fig.3-10 shows an example of a RIG that is to be colored with 3 colors. First, nodes are removed and
after the remaining graph has been colored they are added again, and a color is assigned to them.

a b c

d

e

b c

d

e

b c

d

b c b

a b c

d

e

01

2

1

2

b c

d

e

0

2

1

2

b c

d

0

2

1
b c

0 1
b

0

Fig. 3-10. Coloring a graph with 3 colors

3.4.2 Putting values into specific registers

Before the graph is colored, its nodes are either uncolored (reg = -1) or precolored (reg ≥ 0). We can be
sure that no two precolored nodes have equal color if they are adjacent. Precolored nodes should retain their
color, thus we can simply exclude them from coloring and just have to make sure that the color of their
neighbors will not conflict with them.

We do that be removing only uncolored nodes and coloring the remaining graph recursively. When the
graph only contains precolored nodes we stop the recursion and begin adding nodes again. Fig.3-11 shows
the coloring of the same graph as in Fig.3-10, but this time nodes a and e should go into register 1, i.e. they
are precolored with 1.

a b c

d

e

a b c

e

a b

e

a

e

a b c

d

e

a b c

e

a b

e

a

e
1

1

1

1 01

1

0 2

1

1 0 2

1

1

1

1

1

1

1

1

1

Fig.3-11. Coloring a graph where a and e have to get color 1

Here is a pseudocode version of the coloring algorithm which also handles values that have to go into
specific registers. n is the number of available registers.

- 23 -

color():
x = any uncolored node with less than n neighbors;

 if (there is such a node) {
 remove x and its neighbors from RIG;
 color();

add x and its neighbors to RIG;
 x.reg = smallest register which is not used by neighbors of x;
 }

3.4.3 Computing the Weights of Nodes

If the coloring algorithm cannot find a node with less than n neighbors, it should remove the node with
minimal weight. The weight should be a function of the costs that it takes to access this value if it resides in
memory instead of in a register. A common cost function is a weighted use count of this value, where every
use outside of a loop increases the count by 1, while every use within a loop is multiplied by a factor of 10.

If we remove the nodes with minimal access costs first, these nodes are more likely to receive register
numbers greater than n and thus go into memory, whereas the higher cost values receive lower numbers and
are therefore allocated in registers. This makes sense because we want the values that are accessed more
frequently to be in registers.

Because of time restrictions, we did not implement the weight computation so far. When we cannot
find a node with less than n neighbors we currently take any of the yet uncolored nodes. The only difficult
issue in the weight computation will be how to determine the nesting level of a use, especially in the case of
unstructured programs.

3.5 Implementation of Register Allocation

Our register allocator is implemented in four classes:

RIG represents the Register Interference Graph with operations to add and remove nodes, to set,
remove and check for edges between nodes, to join nodes, and finally to color the graph. In
addition to the actual graph, which is stored as a lower triangular bit matrix, we also maintain
an array val, which maps node numbers (i.e. instruction numbers) to instructions. Fig.3-12
sketches the data structures of the RIG for a given graph.

RIGNode represents the nodes of the RIG. This is mainly a data class.

RIGVisitor traverses the IR instructions in reverse order, performs live range analysis, and builds the
RIG. It holds the set of currently live values as well as the list of value pairs that are to be
joined later. When it traverses phi functions the RIGVisitor knows in which branch it is, i.e.
which phi operand it should consider.

RAlloc is the proper register allocator. Its main method is build_RIG which is called from
IRScope::build_graph. The method life_at_block(b) computes the values that are live at the
beginning of block b. This method calls itself recursively for the successors of b, starts the
RIGVisitor on the instructions of the blocks and stores the live sets in the blocks. RAlloc also
has methods to join nodes of the graph and to generate register moves for phi operands that
cannot be joined with the left-hand side of their phi functions.

- 24 -

2
01

3

0
1
2
3

3210

graph

adjacency matrix

RIG data structures

0

1

2

3

3
2
1
0

line
head

3
2
1
0

val

to
instructions

RIGNode

Fig.3-12. Data structures of the RIG for a given graph

As can be seen from Fig.3-12 a RIG consists of several lines. The line array provides a mapping from node
numbers to RIGNodes. A RIGNode points to the set of this node's neighbors. The RIGNodes are also linked
into a linear list which makes it easy to remove and add nodes and still find out quickly which nodes are
currently in the graph without having to traverse the whole line array. Note that only the lower triangle of
the adjacency matrix is stored in the neighbor sets. The sets are implemented as objects of class Bitset,
which offers bit sets of arbitrary length stored as word arrays. Since all sets are of equal length (the number
of instructions in the method), the length is not stored in the sets but is implemented as a static variable of
class Bitset.

3.6 Interfacing the Code Generator to the Register Allocator

The code generator of the current compiler uses a visitor to traverse the instructions, allocate registers,
create items and emit code. If our register allocator is used, the code generator can work in the same way,
except that register allocation does not have to be done for most values. If the code generator visits an
instruction x, the following situations may occur:

• If x is a Constant and x.reg < 0, this constant will be used as an immediate operand in a subsequent
instruction. No register has to be allocated.

• If x is of type int or object, x.reg holds the register that is to be used for the value of this instruction.
• If x is of type long, x.reg and x.next.reg hold the register pair that is to be used for the value of this

instruction. The instruction x.next is a HiWord and should be ignored.
• If x is of type float or double, the code generator should allocate a floating point register as in the

current version of the compiler.
• If x is a RegMove, then if x.reg = x.value.reg the instruction should be ignored, otherwise a register

move should be emitted. It may be necessary to update the items that hold x.value.reg so that they now
hold x.reg.

• If x is an Affect instruction, x.reg holds the register that has been reserved as a temporary. Affect
instructions have to be ignored otherwise.

Before code for an instruction is emitted, the code generator should check if the registers that are used for
the instruction are real registers or memory locations. If they are memory locations, it should generate load
or store instructions to load the value into the scratch register or store it from there.

At a method call point the registers in use must be saved and after the call they must be restored.
Currently there is no information about which registers are in use at a method call point. This could,
however, be easily provided by our register allocator. During live range analysis we know which values are

- 25 -

alive at a method call point. After the graph has been colored we also know which registers are used by
these values. We could simply store these sets for all method call points.

4. Conclusions

Building on the implementation of the current Java Hotspot™ Client Compiler we have added static single
assignment form for IR instructions as well as a graph coloring register allocator. We have used simple
algorithms that do not always produce optimal results but are fast. Although detailed measurements have
not yet been performed since the code generation phase is still missing, we received the impression that
compilation is not slowed down substantially by our modifications. Due to time restrictions in this
sabbatical a number of issues are still missing or could be improved with hindsight.

Issues that are still missing

• SSA form is currently not generated for methods having exception handlers or jsr instructions. In these
situations we simply "bail out", i.e. the method is not compiled but continues to be interpreted.

• Currently we do not compute the weights of values, that should be used to determine which values go
into registers and which go to memory. The weights should be computed based on weighted use
counts, which should not be very difficult.

• Currently we do not generate information about the locations of pointers at safepoints (i.e. the points
where exceptions and garbage collection can occur safely). This could be easily added, however, since
we know the live values at these points as well as their locations and just have to bring this knowledge
into the desired form.

• Currently we do not produce information about which registers are in use at method call points.
However, this information could be easily provided based on the knowledge about live values and their
registers at method call points.

Issues that could be improved

• The idea to generate phi functions in loop headers for all variables in advance should be reconsidered.
The advantage of this idea is that we do not have to rename the use of values after a phi function was
inserted. The disadvantage is that we have to eliminate redundant phi functions later, which turned out
to be more complicated than expected. One should try out to create phi functions in loop headers only
when necessary and to rename all uses of the corresponding values with def-use lists. The simpler of
the two techniques should then be retained.

• Our compiler inserts RegMove, Affect, and HiWord instructions into the IR. In most cases this is made
necessary by the architecture of the target machine (e.g. in order to force certain values into specific
registers or to reserve temporary registers). Currently these modifications are made in class
GraphMaker, which belongs to the front end of the compiler. Since they are machine specific,
however, they should be made in the back end. In order to do that we would need a pass over all
instructions before live range analysis. In this pass we could insert the necessary instructions.

• The RegMove, Affect and HiWord instructions are currently position dependent, i.e. they have to occur
before or after a certain instruction in the IR. This may be a problem when instructions are to be moved
(e.g. for instruction scheduling). As a remedy, one could make these instructions explicit arguments of
the instructions to which they belong. One could add a variable length argument list to all instructions
so that any number of auxiliary instructions can be attached to them. On the other hand, if register
allocation is the last pass before code generation and if auxiliary instructions are only inserted before
register allocation, their position dependent nature may not be a big problem.

• The existing practice of "pinning" instructions (i.e. marking those instructions that have to be generated
in a fixed order) might not be correct yet. We did not have time to look at this aspect in detail.

• The memory used for live sets is currently larger than necessary. The set size depends on the maximum
set element, i.e. on the largest instruction number. About 40% of the instructions do not generate a
value, however, and thus will never occur as an element of a live set. One should use a denser

- 26 -

numbering scheme for instructions, so that only instructions that produce values get a number and so
the live sets become smaller.

Acknowledgements

I would like to thank Robert Griesemer and Srdjan Mitrovic, the architects of the Java Hotspot™ Client
Compiler. It was a pleasure to work with them and to study their compiler. Its clean and simple structure
made it easy to add my enhancements. I am also grateful for the time that they took to discuss various
aspects of my work and contributing many ideas. I would also like to thank all the colleagues in the Hotspot
team and their managers, particularly Tricia Jordan, who made it possible for me to spend my sabbatical at
Sun Microsystems, and who provided a comfortable working and living environment for me.

References

Cytr91 Ron Cytron, Jeane Ferrante, Barry K. Rosen, Mark N. Wegman: Efficiently Computing Static
Single Assignment Form and the Control Dependence Graph. ACM TOPLAS 13(4):451-490,
October 1991.

GrMi00 Robert Griesemer, Srdjan Mitrovic: A Compiler for the Java HotSpot Virtual Machine. In
Lászlo Böszörmenyi, Jürg Gutknecht, Gustav Pomberger (eds.): The School of Niklaus
Wirth—The Art of Simplicity. dpunkt.verlag 2000

Much97 Steven S. Muchnick: Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997

- 27 -

Appendix A: Files and Classes

The following list shows the files and classes that were added or modified during this work (name.* means
name.hpp and name.cpp).

New

Files Classes Description
c1_Bitset.* Bitset Light weight bit sets for live sets and for marking.
c1_Block.* Block The basic blocks of the CFG.
c1_GraphMaker.* LocalMap

BlockListMaker
GraphMaker

Used during type analysis to make overlapping variable indexes
unique.
Corresponds to BlockListBuilder. Finds block leaders.
Corresponds to GraphBuilder. Builds the CFG and transforms
the instructions into SSA form.

c1_RAlloc.* RIGNode
RIG
RIGVisitor

RAlloc

A node of the RIG.
The Register Interference Graph.
Visits all instructions, performs live range analysis and finds the
edges in the RIG.
Starts the RIGVisitor on all blocks, tries to join nodes and starts
the coloring of the RIG.

Modified

Files Classes Description
c1_Canonicalizer.* Canonicalizer Visitor functionality for Affect, Local, PhiFun, RegMove.
c1_CodeGenerator_i486.cpp ValueGen Visitor functionality for Affect, Local, PhiFun, RegMove.
c1_Inliner.cpp Inliner Visitor functionality for Affect, Local, PhiFun, RegMove.
c1_Instruction.hpp Instruction Affect, Local, PhiFun and RegMove added. HiWord is now also

considered in visitors. Instruction got a reg field and a vid()
method (preparation for a denser numbering scheme for
instructions).

c1_InstructionPrinter.* InstructionPrinter Visitor functionality for Affect, Local, PhiFun, RegMove.
c1_IR.cpp IRScope Method build_graph now directs the building of the CFG, the

gneration of SSA form and register allocation.
c1_ValueStack.* ValueStack Modifications to load_local and store_local. New methods

store_local_grow, finish_locals, full_copy, dump.
c1_ValueType.* UnknownType added

- 28 -

Appendix B: Instructions Requiring Special Registers

The following bytecode instructions are currently implemented to need special registers on the i486:

Bytecode Register Before operation After operation
imul eax

edx
multiplicand low word of product

high word or product
idiv
irem

eax
edx

low word of dividend
high word or dividend

quotient
remainder

ishl
ishr
iushr

ecx shift distance

ireturn
areturn

eax return value

lreturn eax, edx return value
invokevirtual
invokeinterface

ecx
eax
(edx)

receiver
auxiliary result if a function

result if a long function
invokespecial ecx receiver
new eax

ebx, ecx, edx, esi auxiliaries
allocated object

newarray eax
ebx, ecx, edx, esi, edi auxiliaries

allocated object

anewarray eax
ebx, ecx, edx, esi, edi auxiliaries

allocated object

athrow eax exception argument
checkcast ebx, ecx, edx auxiliaries
instanceof ebx, ecx, edx auxiliaries
monitorenter eax

esi, edi
lock
auxiliaries

monitorexit eax
esi, edi

lock
auxiliaries

- 29 -

Appendix C: Examples

Swapping Variables

 static int diff(int n, int m) {
 int h;
 if (m > n) {h = n; n = m; m = h;}
 return n - m;
 }

IR before register allocation

Note how the swap assignments (h = n; n = m; m = h;) are encoded in the phi functions of B0 (i14 := i10
and i15 := i11). Block B1 does not have any instructions left.

B2(0) --> B1 B0 (dom: B4)
 0 0 i10 L1 load m
 1 0 i11 L0 load n
. 2 0 12 if i10 <= i11 then B0 else B1 if m <= n then B0 else B1

B1(5) --> B0 (dom: B2)
. 10 0 13 goto B0

B0(11) --> (dom: B2)

 0: i14 = [i11, i10] // n
 1: i15 = [i10, i11] // m
 2: i16 = [?, i11] // h (the ? denotes an unloaded Local)

 13 0 i17 i14 - i15 n - m
 14 0 r0 := i17
. 14 0 i19 ireturn r0

IR after register allocation

Note how the phi functions are translated back into register moves in order to get rid of them. Block B5
was inserted in order to be able to place a register move there.

B2(0) --> B1 B5 (dom: B4)
 0 0 r2 L1 edx := m
 1 0 r1 L0 ecx := n
. 2 0 12 if r2 <= r1 then B5 else B1 if edx <= ecx then B5 else B1

B1(5) --> B0 (dom: B2)
 5 0 r0 := r2 eax := edx
 5 0 r2 := r1 edx := ecx
. 10 0 13 goto B0

B5(11) --> B0 (dom: B2)
 11 0 r0 := r1 eax := ecx
. 11 0 21 goto B0

B0(11) --> (dom: B2)
 13 0 r0 r0 - r2 eax := eax - edx
 14 0 r0 := r0
. 14 0 i19 ireturn r0

- 30 -

Greatest common divisor

 static int ggt(int n, int m) {
 int r;

 r = n % m;
 while (r != 0) {
 n = m;
 m = r;
 r = n % m;
 }
 return m;
 }

IR before register allocation

Note how the assignments n = m; and m = r; are encoded in the phi functions of B0 (i18 := i19; and i19 :=
i20;).

B3(0) --> B0 (dom: B5)
 0 0 i11 L0 load n
 1 0 i12 L1 load m
 2 0 r0 := i11
 2 0 r2 affect
. 2 0 r2 r0 % i12 r := n % m
 2 0 i16 := r2
. 4 0 17 goto B0

B1(7) --> B0 (dom: B0)
 13 0 r0 := i19
 13 0 r2 affect
. 13 0 r2 r0 % i20 r := m % r (actually n % m)
 13 0 i26 := r2
. 14 0 27 goto B0

B0(15) --> B1 B2 (dom: B3) - loop header

 0: i18 = [i11, i19] // n
 1: i19 = [i12, i20] // m
 2: i20 = [i16, i26] // r

 16 0 i21 0
. 16 0 22 if i20 != i21 then B1 else B2 if r != 0 then B1 else B2

B2(19) --> (dom: B0)
 20 0 r0 := i19
. 20 0 i29 ireturn r0 return n

- 31 -

IR after register allocation

B3(0) --> B0 (dom: B5)
 0 0 r0 L0 eax := n
 1 0 r3 L1 ebx := m
 2 0 r0 := r0
 2 0 r2 affect
. 2 0 r2 r0 % r3 edx := eax % ebx
 2 0 r1 := r2 ecx := edx
 2 0 r0 := r3 eax := ebx
. 4 0 17 goto B0

B1(7) --> B0 (dom: B0)
 13 0 r0 := r0
 13 0 r2 affect
. 13 0 r2 r0 % r1 edx := eax % ecx
 13 0 r2 := r2
 13 0 r0 := r1 eax := ecx
 13 0 r1 := r2 ecx := edx
. 14 0 27 goto B0

B0(15) --> B1 B2 (dom: B3) - loop header
 16 0 i21 0
. 16 0 22 if r1 != i21 then B1 else B2 if ecx != 0 then B1 else B2

B2(19) --> (dom: B0)
 20 0 r0 := r0
. 20 0 i29 ireturn r0 return eax

- 32 -

Sieve of Erathostenes

 static void sieve(int max) {
 boolean prime[] = new boolean[max];
 int p, i;
 for (i = 0; i < max; i++) prime[i] = true;
 p = 2;
 while (p < max) {
 System.out.println(p);
 for (i = p; i < max; i += p) prime[i] = false;
 do { p++; } while (p < max && !prime[p]);
 }
 }

IR before register allocation

B10(0) --> B0 (dom: B12)
 0 0 i19 L0 i19 = max
. 1 0 r0 new boolean array [i19] prime[] = new boolean[max]
 1 0 r3 affect
 1 0 r1 affect
 1 0 r2 affect
 1 0 r6 affect
 1 0 r7 affect
 1 0 a26 := r0 a26 = prime
 4 0 i27 0 i = 0
. 6 0 28 goto B0

B1(9) --> B0 (dom: B0)
 11 0 i34 1
. 12 0 i35 a26[i32] := i34 prime[i] = true
 13 0 i37 i32 + i34 i = i + 1
. 13 0 38 goto B0

B0(16) --> B1 B2 (dom: B10) - loop header

 0: i29 = [i19, i29] alias i19 // max
 1: a30 = [a26, a30] alias a26 // prime
 2: i31 = [?, i31] alias ? // p
 3: i32 = [i27, i37] // i

. 18 0 33 if i32 < i19 then B1 else B2 if i < max then B1 else B2

B2(21) --> B3 (dom: B0)
 21 0 i39 2 p = 2
. 23 0 40 goto B3

B4(26) --> B5 (dom: B3)
 26 0 a46 <unloaded class> System.out.println(p);
. 26 0 a47 a46._-1
 30 0 r1 := a47
 30 0 r0 affect
. 30 0 v50 r1.invokevirtual(i43)
. 35 0 51 goto B5

B6(38) --> B5 (dom: B5)
 40 0 i57 0
. 41 0 i58 a26[i55] := i57 prime[i] = false
 44 0 i59 i55 + i43 i = i + p
. 45 0 60 goto B5

B5(46) --> B6 B7 (dom: B4) - loop header

 0: i52 = [i41, i52] alias i19 // max
 1: a53 = [a42, a53] alias a26 // prime
 2: i54 = [i43, i54] alias i43 // p
 3: i55 = [i43, i59] // i

- 33 -

. 48 0 56 if i55 < i19 then B6 else B7 if i < max then B6 else B7

B7(51) --> B8 B3 (dom: B5) - loop header

 0: i61 = [i41, i61] alias i19 // max
 1: a62 = [a42, a62] alias a26 // prime
 2: i63 = [i43, i66] // p
 3: i64 = [i55, i64] alias i55 // i

 51 0 i65 1
 51 0 i66 i63 + i65 p = p + 1
. 56 0 67 if i66 >= i19 then B3 else B8 if p >= max then B3 else B8

B8(59) --> B7 B3 (dom: B7)
 61 0 i68 a26[i66]
 62 0 i69 0
. 62 0 70 if i68 == i69 then B7 else B3 if prime[p] == false then B7 else B3

B3(65) --> B4 B9 (dom: B2) - loop header

 0: i41 = [i19, i41, i41] alias i19 // max
 1: a42 = [a26, a42, a42] alias a26 // prime
 2: i43 = [i39, i66, i66] // p
 3: i44 = [i32, i55, i55] // i

. 67 0 45 if i43 < i19 then B4 else B9 if p < max then B4 else B9

B9(70) --> (dom: B3)
. 70 0 v71 return

IR after register allocation

B10(0) --> B0 (dom: B12) r8 := max
 0 0 r8 L0
. 1 0 r0 new boolean array [r8] eax := new boolean[r8]
 1 0 r3 affect
 1 0 r1 affect
 1 0 r2 affect
 1 0 r6 affect
 1 0 r7 affect
 1 0 r3 := r0 ebx := eax
 4 0 r1 0 ecx := 0
. 6 0 28 goto B0

B1(9) --> B0 (dom: B0)
 11 0 i34 1
. 12 0 i35 r3[r1] := i34 ebx[ecx] := 1
 13 0 r1 r1 + i34 ecx = ecx + 1
. 13 0 38 goto B0

B0(16) --> B1 B2 (dom: B10) - loop header
. 18 0 33 if r1 < r8 then B1 else B2 if ecx < r8 then B1 else B2

B2(21) --> B3 (dom: B0)
 21 0 r2 2 edx := 2
. 23 0 40 goto B3

B4(26) --> B5 (dom: B3)
 26 0 r0 <unloaded class> System.out.println(p)
. 26 0 r1 r0._-1
 30 0 r1 := r1
 30 0 r0 affect
. 30 0 v50 r1.invokevirtual(r2)
 30 0 r1 := r2 ecx := edx
. 35 0 51 goto B5

- 34 -

B6(38) --> B5 (dom: B5)
 40 0 i57 0
. 41 0 i58 r3[r1] := i57 ebx[ecx] := 0
 44 0 r1 r1 + r2 ecx := ecx + edx
. 45 0 60 goto B5

B5(46) --> B6 B7 (dom: B4) - loop header
. 48 0 56 if r1 < r8 then B6 else B7 if ecx < r8 then B6 else B7

B7(51) --> B8 B3 (dom: B5) - loop header
 51 0 i65 1
 51 0 r2 r2 + i65 edx := edx + 1
. 56 0 67 if r2 >= r8 then B3 else B8 if edx >= r8 then B3 else B8

B8(59) --> B7 B3 (dom: B7)
 61 0 r0 r3[r1]
 62 0 i69 0
. 62 0 70 if r0 == i69 then B7 else B3 if ebx[edx] == 0 then B7 else B3

B3(65) --> B4 B9 (dom: B2) - loop header
. 67 0 45 if r2 < r8 then B4 else B9 if edx < r8 then B4 else B9

B9(70) --> (dom: B3)
. 70 0 v71 return

