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Abstract I

Abstract

Each string in Java consists of two separate objects. Metadata such as the length of the
string are stored in the string object. For storing the characters, a separate character
array is used. This separation results in increased memory usage and bad cache behavior
because string operations must access both objects.

The optimization presented in this thesis merges the string object and the character array
into a single object. Such an optimized string has a better cache behavior and requires
less memory. The optimization is implemented for Sun Microsystems’ Java HotSpotTM

VM and is automatically applied at run time. The class String is optimized manually
and all methods that allocate string objects are modified at run time. The modification
at run time is performed once when loading a class and impacts the performance only
negligibly.

Several benchmarks show a reduction of the memory usage and a performance increase.
For the SPECjbb2005 benchmark, the performance increases by 8% and the memory usage
is reduced by 3%. The performance of the DaCapo benchmarks improves by up to 14%
(4% on average) and the memory usage is reduced by 5% on average. For the SPECjvm98
benchmarks, the performance improves by up to 62% (8% on average).



Kurzfassung II

Kurzfassung

Jeder String in Java besteht aus zwei separaten Objekten. Metadaten wie die Länge
des Strings werden im String Objekt gespeichert. Die Zeichen sind in einem eigenen
Character Array gespeichert. Diese Aufteilung führt zu einem erhöhten Speicherbedarf
und zu einem schlechten Cache Verhalten, da für String Operationen auf beide Objekte
zugegriffen werden muss.

Die in dieser Diplomarbeit vorgestellte Optimierung verschmilzt das String Objekt und
das Character Array zu einem Objekt. Dieser optimierte String hat ein besseres Cache
Verhalten und benötigt weniger Speicher. Die Optimierung ist für Sun Microsystems’
Java HotSpotTM VM implementiert und wird automatisch zur Laufzeit durchgeführt.
Die Klasse String wird manuell optimiert und es werden alle Methoden, die String Ob-
jekte allokieren, zur Laufzeit modifiziert. Diese Modifikation zur Laufzeit erfolgt ein-
malig beim Laden einer Klasse und hat daher einen vernachlässigbaren Einfluss auf die
Geschwindigkeit.

Mehrere Benchmarks zeigen eine Reduktion des Speicherbedarfs und eine Steigerung der
Geschwindigkeit. Beim SPECjbb2005 Benchmark steigt die Geschwindigkeit um 8% und
der Speicherbedarf wird um 3% reduziert. Die Geschwindgkeit der DaCapo Benchmarks
steigt um bis zu 14% (durchschnittlich 4%) und der Speichbedarf reduziert sich um durch-
schnittlich 5%. Bei den SPECjvm98 Benchmarks verbessert sich die Geschwindigkeit um
bis zu 64% (durchschnittlich 8%).
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Introduction 1

Chapter 1

Introduction

Strings are a common data structure and are used frequently in applications. Therefore,
optimizing strings has a high potential to increase the performance. In this master’s thesis,
a new string optimization approach for Java is implemented and evaluated.

Each Java string stores metadata like the string’s length and a reference to a charac-
ter array. This corresponding character array is a separate object that stores the string
characters. Due to this separation, it is possible that multiple string objects share the
same character array. This sharing of character arrays is extended by the fields offset

and count, which store the string’s starting position within the character array and the
number of characters that belong to the string. This allows character array sharing even
if only a part of the character array is used. However, these fields increase the memory
usage and have a negative impact on the performance.

Measurements with multiple benchmark suites yield that strings share their character
array only in rare cases. Therefore, this thesis proposes an optimization that removes all
unnecessary fields and merges the character array with the string object. This is possible
because string objects are immutable and therefore the character array must not change
during the lifetime. This voids the sharing of character arrays between string objects, but
it offers other advantages. This optimization is implemented for Sun Microsystems’ Java
HotSpotTM VM, so that it is performed at run time behind the scenes and no actions on
part of the programmer are required. In the VM, it is necessary to apply changes to the
interpreter, the just-in-time-compiler, and to several other subsystems. The evaluation
shows that the optimization increases the performance and reduces the memory usage.

An additional “optimized hash field” variant also removes the field hashcode. This field
caches the string hash code after the first computation, so that the hash code must be
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computed only once. The removal saves four bytes per string object but would preclude
the caching of the hash code. Therefore, an approach was implemented that caches the
hash code in the object header instead of the separate field hashcode.

1.1 Development Steps

This master’s thesis was planned and implemented in multiple steps. The details for
each step are presented in the subsequent chapters. In contrast to the listing below, the
sequence of the chapters does not necessarily reflect the implementation order.

1. Analyzing the advantages and disadvantages of the optimization.

2. Removal of the string field offset within the Java source code and the Java
HotSpotTM VM.

3. Introduction of new bytecodes for optimized string objects.

4. Modification of the Java programming language compiler (javac) for compiling the
optimized string class.

5. Implementation of a bytecode rewriting heuristic.

6. Implementation of the new bytecodes in the interpreter.

7. Modification of internal data structures of the Java HotSpotTM VM.

8. Implementation of the new bytecodes in the just-in-time compiler.

9. Implementation of additional optimizations.

10. Implementation of the “optimized hash field” variant.

11. Benchmark execution and evaluation of the results.

1.2 Structure of the Thesis

Chapter 2 describes Java virtual machines in general, and focuses on Sun Microsystems’
Java HotSpotTM VM. The most important components like the interpreter and the just-
in-time compiler are discussed in detail, and general Java related topics like reflection
or the Java Native Interface are covered. These parts are necessary to understand the
implementation of the optimization described in Chapter 4.



Introduction 3

The original and the optimized Java String classes are illustrated in Chapter 3. This chap-
ter also presents the results of a detailed analysis of the advantages and the disadvantages
of the optimization in comparison with original strings.

Chapter 4 is the main chapter of this thesis and describes the implementation details of
the string optimization, like the bytecode transformation heuristic and the new bytecodes
for the optimized string objects. Furthermore, this chapter also covers some non-successful
approaches and difficulties.

The optimization is evaluated in Chapter 5. Multiple benchmarks were executed on two
different machines. The performance gain and the reduction of memory usage are measured
as two different aspects of the optimization. The benchmark results are diagrammed and
discussed.

Chapter 6 presents related work to this master’s thesis. The differences between the related
work and the work done under the scope of this master’s thesis are described.

The results of this master thesis are summarized in Chapter 7. Furthermore, problems with
the current implementation as well as some ideas of further optimizations are stated.
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Chapter 2

The Java HotSpotTM Virtual

Machine

For the platform independence of Java applications, a virtual machine (VM) is required.
Java source code is compiled by a Java programming language compiler to machine-
independent bytecodes that are executed by a Java virtual machine (JVM) [12]. The
specification of a JVM is given in an abstract way [21], so that different implementa-
tions and optimizations are possible. Today, multiple companies provide or sell their JVM
implementations.

Sun Microsystem’s Java HotSpotTM VM is written in the programming language C++

and is platform dependent. An interpreter starts with the bytecode execution, but selected
methods can be compiled to platform dependent machine code to improve the performance.
To further speed up the execution, multiple optimizations are applied while compiling
bytecode to machine code.

2.1 Overview

A JVM is a program that supports the Java instructions set and executes platform inde-
pendent Java bytecodes. The Java instructions set specifies 205 different bytecodes. The
maximum number is limited to 256 because only one byte is used for encoding. Within a
JVM, bytecodes that are not contained in the official instruction set can be used for the
implementation of optimizations.
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In principle, a JVM is a stack machine and the bytecodes pop or push operands to or
from the operand stack. A Java method is a sequence of bytecodes and their operands.
For the execution of a method, the method can be interpreted or compiled as presented
in Figure 2.1. Interpreting a method is slow and therefore a method can be compiled
to machine code. Because the compilation is performed at run time, the necessary time
adds to the total execution time of the application. To determine for which method
a compilation is beneficial, each invocation of a method is recorded by increasing its
invocation counter. If the invocation counter reaches a certain threshold, the method is
compiled. This uses the fact that only a small percentage of the code is executed frequently
and therefore contributes the main part to the total execution time.

interpreter JIT compiler

machine code

generates

method of a loaded 

and initialized class

executes compiles

Figure 2.1: Execution of a method

Before a method can be executed, its class must be loaded by the JVM. For this purpose, a
class loader dynamically loads the required classes. The bootstrap class loader is directly
built into the JVM. User defined class loaders can be implemented to extend the class
loading behavior. It is for example possible to implement a class loader that retrieves the
class file over a network or reads it from an encrypted file. All class loaders except the
bootstrap class loader reference a parent class loader. If a class loader should load a class,
it first delegates the class loading to its parent class loader. Only if the parent class loader
fails to load the class, the class loader tries to load it itself. A loaded class is identified
by its fully qualified name and its class loader. Therefore, two classes with the same fully
qualified name, but with different class loaders are treated as different classes. Figure 2.2
illustrates the basic procedure of loading a class into the JVM. The procedure involves the
following steps:

• A Java programming language compiler like Sun Microsystems’ javac is used to
compile the Java source code to platform independent bytecodes. A class file is
generated that contains the bytecodes and additional metadata.

• The class loader retrieves the class file, parses it and verifies its structure. Then,
an internal representation of the classes, interfaces, methods, fields, and constants is
generated.
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.class file

loads

class loading linker initializer

loaded and 

initialized class

results in

Figure 2.2: Class loading

• Upon the first execution, the loaded class is linked. This involves a bytecode veri-
fication process that ensures that no broken or invalid bytecode is executed. Then,
the symbolic references in the bytecode can be resolved to actual classes, interfaces,
fields, or methods. This might involve the consecutive loading of other classes or
interfaces.

• In the last step, the loaded class is initialized: the static initializer is executed, so
that values are assigned to static fields. After this step, bytecodes that allocate or
access an instance of this class can be executed.

In contrast to other object oriented languages, Java allocates all objects on the heap. Only
as an optimization for objects that do not escape a method or thread, stack allocation
might be used [17]. However, this behavior is an optimization optionally performed by
the Java HotSpotTM VM and cannot be influenced by the programmer. For the dealloca-
tion of objects, a generational garbage collector [16] is used. This garbage collector runs
periodically and deallocates objects that are no longer referenced.

2.2 Class File

The Java programming language compiler compiles Java source code to a class file [12].
The file encapsulates various informations that are used for the execution [21]:

• Basic information: The class name, the super class, implemented interfaces, and
access flags are stored. The access flags correspond to the access flags specified in
the Java source code. When a class is loaded, this information is used to determine
if other classes must be loaded consecutively.

• Constant pool: This data structure is similar to a symbol table, where string
constants, the names of classes, interfaces, and fields as well as other constants are
stored. If a class uses the same constant multiple times, it is only stored once. All
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code positions that need this constant reference it through an index into the constant
pool.

• Fields: The name, the access flags, the field type, and optional annotations are
stored for every field. When a field is accessed, it is queried if the corresponding
class has a field with the specified name and if the flags allow the access.

• Methods: For each method, the name, the access flags, the signature, and optional
annotations are stored. Furthermore, for all methods that are not declared as native
or abstract, the Java bytecodes are present.

The information in the constant pool is highly distributed, as illustrated in Fig-
ure 2.3. It shows the constant pool entries for the constructors String(char[] ch) and
String(byte[] b). The entries 0 to 3 store string constants that are referenced by the
other entries, and entry 4 stores the class String. The method descriptors are stored in
the entries 5 and 6 and reference the same name, but use different signatures. The entries
7 and 8 store the fully qualified methods that share the same class but reference different
methods. These two entries can be referenced by an invokespecial bytecode to invoke
one of the constructors.

"String"

"<init>"

"(C[)V"

"(B[)V"

<init>(char[] ch)

<init>(byte[] b)

0

1

2

3

5

6

Name: #1 Sig: #2

Name: #1 Sig: #3

Class: #4 Meth: #5

Class: #4 Meth: #6

String.<init>(char[] ch)

String.<init>(byte[] b)

void … (char[] ch)

void … (byte[] b)

Name: #04 class String

7

8

Figure 2.3: Constant pool example

When a class file is loaded, the run time constant pool is created. This is the JVM
internal representation that holds the same information as the class file, but can be more
efficiently accessed by the interpreter and the just-in-time compiler. If the interpreter
starts the execution of a method, the run time constant pool is used to retrieve the specific
method.
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2.3 Interpreter

After the startup of the Java HotSpotTM VM, all methods are interpreted per default. The
interpreter has a machine dependent code template for each bytecode. These templates are
translated to machine code at the startup. If a method is interpreted multiple times, it is
still nearly as slow as on its first invocation. This is the case because the resulting code from
the first execution is not stored anywhere. During the bytecode execution, the interpreter
collects run time information that is used to trigger the just-in-time compilation. Each
time a method is invoked, its invocation counter is increased. If this counter reaches a
certain threshold, the method is compiled to optimized machine code. Without exception
handling, the interpreter repeats the steps shown in Listing 2.1 [21]. The next bytecode
and its operands are loaded, so that the appropriate code template can be executed.

instruction = nextInstruction();

while(instruction != null) {

if(instruction.hasOperands()) instruction.fetchOperands();

instruction.execute();

instruction = nextInstruction();

}

Listing 2.1: Interpreter loop

2.4 Just-in-Time Compiler

In a traditional compiler, the source code is compiled to machine code before the execution.
The whole program is compiled once, so that compilation is not time critical. In Java,
just-in-time (JIT) compilation is used to speed up the execution of an application [2]. In
contrast to a traditional compiler, the compilation is performed during the execution, so
that the compilation time adds to the total execution time. Therefore, it is necessary that
the compilation is as fast as possible. Time consuming optimizations are often omitted.
To reduce the total compilation time further, only selected methods are compiled. For
deciding which methods should be compiled, the interpreter gathers run time information
like the number of invocations for each method. If a specific invocation threshold is
reached, the method is compiled.

Machine code is generated as a result of the compilation. This code is stored for the remain-
ing execution time and replaces the original method, so that on subsequent invocations
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the machine code is executed. JIT compilers have the disadvantage that the compilation
time is critical and that therefore fewer optimizations can be applied. However, a JIT
compiler can make use of processor and platform dependent optimizations that cannot be
applied to conventionally compiled programs because of backwards compatibility.

Furthermore, the JIT compiler can perform optimistic optimizations that might have to
be deoptimized later during the execution [14]. For the Java HotSpotTM VM, method
inlining is an important optimistically applied optimization. If a method is not overridden
by any loaded subclass, it is a candidate for method inlining. Method inlining replaces the
invocation of a method with the method’s code, i.e. it copies the invoked method’s code to
the position of the invocation. This removes the overhead of the method invocation and
enlarges the method’s body to increase the opportunities of other optimizations. With-
out deoptimization, method inlining would be far more difficult in Java because all class
methods are virtual per definition. If a subclass that overrides an inlined method is loaded
during the execution, the inlining is voided because the inlined base class method would
always be executed instead of the overridden subclass method. Therefore, the affected
method must be recompiled. Deoptimization is only necessary if the affected method
is currently being executed. In this case, the Java HotSpotTM VM falls back from the
compiled machine code to the interpreter.

Because the performance of a JIT compiled application depends on the number of compiled
methods, it changes over time. Two metrics are used to characterize the performance:

• Startup time: When the execution of an application is started, all methods are
interpreted. This is slow and therefore the overall performance is low. When the
first methods are compiled, the compilation adds a significant amount of additional
workload that precludes a performance gain. The longer the JIT compilation takes,
the higher is the startup time. A high startup time can be afforded on servers, where
mainly long running applications are executed and where a high peak performance
is to be achieved. For client applications, the startup time must be as low as possible
not to degrade the user experience.

• Peak performance: After the startup time, the most important methods are com-
piled and the application’s performance converges towards its maximum. The peak
performance is determined by the quality of the optimizations applied during the
JIT compilation.

Therefore, Sun Microsystems delivers two different JIT compilers: the server compiler and
the client compiler. The optimization presented in this master’s thesis is only implemented
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for the client compiler and therefore the following description of the two JIT compilers
focuses on the client compiler.

2.4.1 Server Compiler

The server compiler performs time consuming optimizations in order to generate as good
as possible optimized machine code [22]. On a server, mostly long running applications are
executed, so that the longer compilation time is only a small overhead in comparison to
the total execution time. Furthermore, the compilation can be efficiently performed in the
background if multiple processors are available, i.e. one of the processors can be used only
for compilation. Like a traditional compiler, the server compiler uses the following phases
for the compilation: parsing, machine-independent optimization, instruction selection,
global code motion and scheduling, register allocation, peephole optimization, and code
generation.

The parser creates the compiler’s intermediate representation (IR) from the bytecodes
and applies some optimizations like constant folding. Platform independent optimizations
like null-check elimination and dead-code removal are applied to the IR. The instruction
selection phase maps the machine independent IR to machine dependent instructions.
These machine dependent instructions are reordered to optimize their sequence. This
avoids dependencies between the instructions and increases the performance. Then, phys-
ical machine registers are assigned to each instruction. A peephole optimization follows
that analyzes the code in small pieces and merges or replaces instructions. The last step
generates the machine code and additional information required for the execution.

2.4.2 Client Compiler

The client compiler is optimized for compilation speed and a small footprint [13, 18].
Therefore, all time consuming optimizations are omitted. With this strategy, an appli-
cation’s startup time is low and the generated code is still reasonably well optimized, so
that a good peak performance is achieved. The compilation of a method consist of three
phases: high-level intermediate representation (HIR) generation, low-level intermediate
representation (LIR) generation, and code generation.

The HIR represents the control flow graph. Since Java 6, it is in static single assignment
(SSA) form [9] and suitable for global optimizations. A C++ class hierarchy models the
different high level instructions, where each instruction represents both the computation
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and the result. Therefore, instructions might have other instructions as arguments. For
generating the HIR, two passes over the bytecodes are necessary. The first pass determines
and creates the basic blocks for the control flow graph. All instructions belong to a basic
block, until a jump or a jump target is encountered. Such an instruction terminates the
basic block and starts a new one. The second pass uses abstract interpretation of the
bytecodes to link the basic blocks and to fill them with instructions. Several optimizations
like constant folding, null-check elimination, and method inlining are performed during
and after the generation of the HIR. Because the HIR is in SSA form, these optimizations
are fast and can be applied easily.

In the next phase, the LIR is created from the optimized HIR. The LIR is more suitable for
register allocation and code generation because it is similar to machine code. However, the
LIR is still mainly platform independent. Instead of physical machine registers, virtual
registers are used for nearly all instructions. Platform dependent parts, like the use of
specific machine registers for specific instructions, can be modeled directly in the LIR,
which simplifies the code generation. Linear scan register allocation [32] is used to map
all virtual registers to physical ones.

Code generation finishes the compilation of a method. This process is rather simple
because register allocation was already performed previously. Therefore it is only necessary
to translate each LIR instruction to the machine dependent instructions. Uncommon cases
like throwing an exception or a necessary garbage collection are handled as separate cases,
which are emitted at the method’s end. Additionally to the machine code, other for the
execution required information is generated.

Within the Java HotSpotTM VM, it is possible to declare specific methods as intrinsic. If
such an intrinsic method is to be compiled or inlined, a handcrafted sequence of instruc-
tions or a fixed piece of machine code is used. This provides the possibility of manually
optimizing specific methods.

2.5 Memory Management

In many programming languages, the programmer explicitly deallocates objects. This has
the advantage that the moment of the deallocation is known and that the programmer can
free an object immediately after it is ensured that it is no longer needed. On the other
hand, explicit memory management is complex and might lead to a variety of errors. In
Java, automatic memory management is performed so that the programmer does not need
to deallocate objects manually [28].
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2.5.1 Object Allocation

The allocation and initialization of an object is performed by two different bytecodes in
Java. Figure 2.4 illustrates the bytecodes for allocating objects and arrays [21]. For the
allocation of an object, its size must be known. The size of an class instance is statically
known because of its base class and its fields. The bytecode new, which is used for the
allocation of class instances, has as its parameter a constant pool entry to a class descriptor
object. Upon the execution, the constant pool entry is resolved and the referenced class
descriptor object is used to determine the instance size. After retrieving the size, the
instance is allocated.

...

objectref

...

length

...

arrayref

...
new #index

newarray #type

operand 

stack before

operand 

stack after

...

length

...

arrayref
anewarray #class

Figure 2.4: Bytecodes used for allocation

Arrays are the only data structure in Java where the size is not known statically. Therefore,
the instructions newarray and anewarray are used for allocating type or object arrays.
The only statically known fact about arrays is the element type, which is one of the
operands of the instructions. As a second operand, the desired length is required on top
of the operand stack. With this information, the total array size is calculated: the array
length is multiplied with the size of the element type and the array’s header size is added
to the result. After this calculation, the allocation is performed.

All Java objects are aligned to addresses that are divisible by 8 bytes, both on 32-bit
architectures and on 64-bit architectures. If an object’s size is not a multiple of 8 bytes,
space is wasted. Figure 2.5 shows this on a string object with a length of zero characters.
The character array has a size of 12 bytes, which is not divisible by 8. Therefore, 4 bytes
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are wasted. The string object has a size of 24 bytes, which is divisible by 8, so that no
space is wasted.

char[0] String

8016 to 80398000 to 8015

Figure 2.5: Heap with a string object and 8 byte alignment

2.5.2 Garbage Collector

Instead of deallocating objects manually, a generational garbage collector is used in the
Java HotSpotTM VM [16]. The garbage collector runs periodically and collects all objects
that are no longer referenced. For this task, it is necessary that the GC has exact infor-
mation about all objects. Especially the positions of all pointers to other objects must be
known. This information is used to determine if an object is still referenced by others, or
if it is already unreachable. A garbage collection can occur only on specific positions, so
called safepoints. Method calls and operations that may throw an exception are examples
for instructions where a safepoint is created. If the default garbage collector is used, the
whole program execution is stopped each time a garbage collection occurs. The heap is
divided into three generations for a more efficient heap management:

• Young generation: Most objects only have a very short lifetime and therefore a
separate generation for newly allocated objects is used that is managed by a stop-and-
copy garbage collector. The young generation is usually small in comparison to the
total heap size. Many fast garbage collections (so called minor garbage collections)
occur for this generation. If an object has survived several garbage collections, it is
promoted to the tenured generation.

• Tenured generation: This generation is managed by a mark-and-compact garbage
collector and occupies the remaining part of the heap. Only few garbage collections
(so called full garbage collections) occur for this generation, but those need lots of
time because of the large size. Long garbage collections might degrade the user
experience because the application does not respond while the garbage collector is
running.

• Permanent generation: This area usually has a fixed size and is reserved for
internal data structures that are mostly needed during the whole execution time of
the application. No longer required objects in this generation might be deallocated
on a full garbage collection.



The Java HotSpotTM Virtual Machine 14

Some garbage collectors try to fulfill certain predefined goals like minimizing the duration
of a garbage collection. This can result in a higher number of total garbage collections
and therefore a higher total garbage collection time. However, it could be more feasible
for applications that require a high response time.

The garbage collector uses per default only one processor. This causes a major performance
degradation on server machines with a large physical memory and multiple processors
because the execution of the whole application must be stopped for the time of the garbage
collection. That is why other garbage collectors are provided by the Java HotSpotTM VM.
A parallel garbage collector reduces the garbage collection overhead by using multiple
processors. Alternatively, a concurrent mark-and-sweep algorithm allows the application
to continue its execution during the garbage collection. For this, some processors are
permanently assigned to the garbage collection. However, every garbage collector has
some disadvantages, so it depends on the scenario which one is the best.

2.6 Object Header

Each Java object has a header of two machine words, i.e. 8 bytes on 32-bit architectures and
16 bytes on 64-bit architectures [23]. Figure 2.6 illustrates the object layout for a character
array: the object header is followed by the array length and the actual characters.

mark word

class pointer

length

char[0]

…

char[n]

0

4

object header

char[]

8

12
object data

Figure 2.6: Java object header on 32-bit architectures

The first machine word, the so called mark word, stores the identity hash code and the
object’s status. The identity hash code is a random value that does not depend on the ob-
ject’s content, and is calculated via the method System.identityHashCode(). Although
the identity hash code is preferably unique for each object, this is not guaranteed. Be-
cause the identity hash code must not change for a specific object during its lifetime and
because it does not depend on the object’s content, it cannot be recomputed and therefore
must be cached. If the object is unlocked, the identity hash code can be stored in the
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mark word. On 32-bit architectures, the identity hash code is truncated to 25 bits. On
64-bit architectures, the mark word is large enough to hold the identity hash code without
truncation. Based on the status information stored in the mark word, an object is in one
of five states shown in Figure 2.7:

• Unlocked: An object in this state can be accessed by any thread without any
restrictions. Only in this state, the identity hash code can be stored in the mark
word.

ageidentity hash code

31-7 6-3

0

2

01

1-0

biased 

bit

tag

pointer to lock record

31-2

00

1-0

pointer to heavyweight monitor

31-2

10

1-0

31-2

11

1-0

thread ID

31-9

01

1-0

age

6-3

1

2

epo-

ch

8-7

unlocked

lightweight 

locked

inflated

marked by

GC

biasable/

biased

Figure 2.7: Possible bit patterns for the mark word

• Lightweight locked: When the bytecode monitorenter is used to lock an object,
it is lightweight locked. A lock record is allocated where metadata and the content of
the mark word (e.g. the identity hash code) are stored. When the object is unlocked,
the saved mark word is restored.

• Inflated: If thread B tries to acquire a lock for an object that is already locked
by thread A, the object’s status is changed to inflated. When thread A unlocks the
object, it recognizes that another thread is waiting for the lock and notifies this
thread.

• Marked: This state is only allowed during garbage collection and is used by the
garbage collector to identify which objects are still reachable. The garbage collector
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follows all pointers and sets the reachable objects to the marked state. After the
mark phase, all objects that are not marked are deallocated.

• Biasable/Biased: Biased locking is an optimization to reduce the number of atomic
operations necessary for locking an object. Per default, biased locking is enabled and
therefore all objects are allocated with the biasable pattern in the mark word. As
long as the stored thread ID is zero, the object is not yet biased to any thread. If
the identity hash code is computed for an object in this state, the object must be
unbiased so that the state can be changed to unlocked.

The second machine word stores a pointer to a class descriptor object. This class descriptor
is unique for all objects of a specific class and holds the metadata and the method table
of the class. Furthermore, it is for example used for the object size computation and for
reflection.

2.7 Java Native Interface

The Java Native Interface (JNI) is a standardized interface that specifies the interoper-
ability between Java and platform dependent binaries [20]. It enables Java application
to invoke platform dependent methods that are written in other programming languages
such as C++. Furthermore, it allows platform dependent code to call Java methods or to
run a complete JVM. It is mainly used to implement platform dependent features or time
critical operations that cannot be implemented completely in Java. The JNI provides lots
of operations such as allocating Java objects or calling Java methods. All these operations
are directly implemented in C++ within the Java HotSpotTM VM.

To call a specific method in a platform dependent library, the library must be loaded via
the method System.loadLibrary(). A specific naming scheme is used to identify JNI
methods in the set of all exported methods of the library. The code example in Listing 2.2
illustrates the usage of the JNI. The static constructor of the Java class Calculator

loads the library that implements the native method Calculator.power(). The C++

implementation of the method is bound to the native Java method, so that it can be
invoked by any Java code.
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public class Calculator {

static { System.loadLibrary("calculate"); }

public static native int power(int base, int exp);

} 

jint Java_Calculator_power__II(JNIEnv *env, jobject obj, 

jint base, jint exp) {

jint result = ...;

return result;

}

(b) C++ code for a JNI method

(a) a class that uses a JNI method

Listing 2.2: Example usage of the Java Native Interface

2.8 Reflection

Reflection is used to determine information about Java objects and their parts at run
time [5]. Furthermore, the fields of an object can be accessed and modified, and its
methods can be invoked. Typical examples for the use of reflection are class browsers,
debuggers or tools for automatic testing. The example presented in Listing 2.3 retrieves
the Class object for strings and prints all available constructors to the console.

public class Reflection {

public void printConstructorNames() {

try {

Class<?> clazz = Class.forName("java.lang.String");

Constructor<?>[] ctors = clazz.getConstructors();

for(Constructor<?> c: ctors) {

System.out.println(c.toGenericString());

}

} catch(SecurityException e) {

e.printStackTrace();

} catch(ClassNotFoundException e) {

e.printStackTrace();

}

}

}

Listing 2.3: Example usage of reflection
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2.9 Defensive Programming

Defensive programming can greatly help to find errors [11]. Especially in a project as big
as the Java HotSpotTM VM, all precautions to prevent or to find errors more efficiently are
highly effective. If a programmer changes some details in his implementation, he maybe
is not aware of the effects on the other parts of the JVM. Therefore, it is useful that each
programmer implements additional checks to validate the preconditions, postconditions,
and invariants. Most checks are only enabled in the debug build of the JVM and do
not reduce the performance of the product version. After finishing changes on the source
code, a debug build is created and used for testing. The Java HotSpotTM VM uses several
techniques for defensive programming that are presented in the following sections.

2.9.1 Assertions

Assertions are the basic technique for defensive programming. They check a condition at
a specific location in the implementation. If the condition does not hold, an error message
is printed and the Java HotSpotTM VM exits. An example for such an assertion is shown
in Listing 2.4: a programmer assumes a heap-word size of four bytes and implements an
optimization based on this.

int size_in_heap_words = ...;

assert(HeapWordSize == 4, "for optimizing the next line");

int size_in_bytes = size_in_heap_words << 2;

Listing 2.4: Example usage of assertions

If the heap-word size changes, the optimization produces a wrong result. With the asser-
tion in place, the invalidated assumption is easily detected and the optimized code can be
changed. Without, this might lead to an error within the garbage collector, which relies
on the correct object size. The mistake is propagated to a completely different part of
the JVM, where multiple possible error sources exist and where the costs for finding the
mistake are much higher.
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2.9.2 Impossible cases

Another way of securing the code is to explicitly handle all possible cases for the state-
ments switch and if. If it is assumed that only two cases are possible, a programmer
often uses an if-else construct, where the else branch does not have any associated
condition. However, this assumption might not hold any longer if new features are added.
All unknown cases are then handled by the else branch, which most likely produces a
wrong result.

Therefore, all known cases should be explicitly checked, so that the else branch can be
declared as an impossible case, as shown in Listing 2.5. If the else branch is still taken,
an error is reported and the JVM exits. The same applies to the default case of switch
statements. Although this technique slightly increases the work for the implementer, it is
especially useful if new features are added to an existing project.

int bytecode = ...;

if(bytecode == _new) {

alloc_object();

} else if(bytecode == _newarray) {

alloc_array();

} else {

should_not_reach_here();

}

switch(bytecode) {

case _new:      alloc_object(); break;

case _newarray: alloc_array(); break;

default:        should_not_reach_here(); break;

}

Listing 2.5: Example for impossible cases

2.9.3 Self-Verification

Self-verification uses verification methods to compare the actual behavior of a program
part with the specified one. This can for example be done by inspecting internal data
structures. Because these verification methods can heavily reduce the performance, they
are not executed in the product version. An example for self-verification is shown in
Listing 2.6: after inserting a string into a hashtable, the string is immediately retrieved to
ensure that it is stored properly. In comparison to the other techniques, self-verification
is more complex and more expensive to implement.
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Hashtable::put(int key, jchar* value) {

... // store the value

#ifdef DEBUG

jchar* in_table = get(key);

assert(value == in_table, "value must be in table now");

#endif

}

Listing 2.6: Example for self-verification

If a performance critical method of an application is at first naively implemented and opti-
mized later on, it is likely that the optimized version contains a bug because optimizations
are more difficult to implement. Therefore, it is useful to keep the unoptimized method
and to compare the results of both methods in a debug build. This is nearly no effort to
implement and can still help to detect bugs.
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Chapter 3

Java Strings

Java allows to declare strings directly at the language level, and it provides the operator“+”
for string concatenation [12]. However, all string operations are compiled to method
calls of the classes String and StringBuilder. Every string stores Java characters that
are defined as Unicode characters with a size of two bytes. In contrast to strings in
programming languages like C, Java strings are not null-terminated because each string
stores its length. Additionally to the basic data structure, the class String contributes
algorithms for string manipulation. However, methods that change a string’s content
always create a new string object because strings are immutable, i.e. the characters of a
string must not change after initialization. Therefore, strings are not suitable if lots of
modifying operations are executed.

For operations, where the string characters change often, the classes StringBuffer or
StringBuilder should be used. These data structures can be seen complementary to
strings and hold a mutable character array that grows dynamically. Different optimizations
can be applied to the data structures, and all are efficient if used correctly. However, the
programmer must decide which one is suitable in which situation.

In this chapter, the original and the optimized Java String classes are described. Fur-
thermore, this chapter presents the results of a detailed analysis of the advantages and the
disadvantages of the optimization.
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3.1 Java String Class

Figure 3.1 illustrates that a string consists of two objects: metadata like the string length
are stored in the actual string object and the string characters are stored in a separate
character array. Because of this separation, multiple string objects can share the same
character array. This sharing of character arrays is extended by the fields count and
offset that store the string’s length and the starting position within the character ar-
ray. Therefore, a string does not need to use the full character array. Methods such as
String.substring() make use of this: instead of copying the selected characters to a new
character array, a new string object is allocated that references the same character array.
Only the starting offset and the length of this newly allocated string object are set. This
technique reduces the number of character arrays with the same content, which is positive
for the memory usage and the performance. The hash code of a string object is computed
from the string characters. To avoid recomputations, the hash code is cached in the field
hashcode. A string object has a minimum size of 24 bytes without its character array,
and 36 bytes with a character array that contains zero characters.

String

count: int

offset: int

hashcode: int

value: char[]

char[]

length: int 

char[0]

...

char[length-1]

8

12

16

20

8

12

Figure 3.1: Layout of Java strings

The field offset increases the memory usage and it must be loaded when a string character
is accessed to determine the string’s starting position. The actual array is then computed
by adding the offset to the character’s index. The field access and the computation are an
overhead with a negative impact on the performance. Furthermore, it is possible that a
string uses a far too large character array. The garbage collector is not aware of this and
cannot free any unnecessary used memory because it determines that the character array
is still referenced by a string object. If a string object uses the whole character array,
the field count wastes memory because it is a duplication of the character array length.
Another disadvantage of original strings is that each time a string object is accessed,
two bounds checks are performed: an explicit bounds check is implemented in the class
String because it is a convention to throw a StringIndexOutOfBoundsException if it
fails. A second implicit bounds check is executed when the character array is accessed.
This duplication reduces the performance.
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A modified class String was used to measure some facts about character array sharing
between string objects for the benchmarks SPECjbb2005 [27], SPECjvm98 [26], and Da-
Capo [3]. The percentage of strings that do not use their full character array is 0.05%
for the SPECjbb2005 benchmark, 5% for the SPECjvm98 benchmarks, and 14% for the
DaCapo benchmarks. These results indicate that it is uncommon that strings use only
a part of their character array. However, a string also shares its character array when
the string is explicitly copied. Of all string allocations, 19% are explicit string copies
for the SPECjbb2005 benchmark and 4% for the SPECjvm98 benchmark. The DaCapo
benchmark uses hardly any explicit string copies.

3.2 Optimized String Class

Because it is not common that a string shares its character array, it is beneficial to remove
all unnecessary fields and to merge the character array with the string object. Merging
the character array with the string object is possible because string objects are immutable
and the character array is declared as private. This has the disadvantage that it precludes
the sharing of character arrays between string objects. However, it offers several other
advantages like the reduction of memory usage and the elimination of field accesses, as
described in the next section.

Figure 3.2 shows string objects for the two implemented variants of the optimization. The
basic optimization, shown in Figure 3.2 (a), merges the character array with the string
object. Furthermore, it removes the string field offset and the character array field
length to reduce the memory usage.

String

count: int

hashcode: int

char[0]

...

char[count-1]

8

12

16

(b) optimized hash field

String

count: int

char[0]

...

char[count-1]

8

12

(a) optimized

Figure 3.2: Layout of optimized strings

The optimization shown in Figure 3.2 (b) also removes the field hashcode and saves an-
other four bytes per string object. The calculated hash code is cached in the mark word of
the object header, where normally the identity hash code is stored. Therefore, the method
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String.hashCode() returns the same value as the method System.identityHashCode()

for such optimized string objects. On 32-bit architectures, the hash code is truncated to
25 bits because the mark word is not large enough to hold the value without truncation.
The hash code algorithm for strings is documented in the Javadoc of the class String,
so that this optimization violates the specification on 32-bit architectures. On 64-bit ar-
chitectures, the mark word is large enough to cache the hash code without truncation, so
that this optimization complies with the specification.

3.3 Advantages and Disadvantages of the Optimization

The presented string optimization tries to fulfill two competing goals: the performance of
string objects should be increased and the memory usage should be decreased. Because
the sharing of character arrays is precluded by the optimization, some string methods
have a decreased performance and an increased memory usage. Therefore, all positive and
negative effects on the memory usage and the performance are discussed in the next two
sections.

3.3.1 Advantages

• Fewer field accesses: Original string objects load the field offset for nearly all
operations. To access a specific string character, the field offset must be added to
the character’s index to determine the actual access position. With the removal of
the field offset, the field access and the computation of the access position are no
longer necessary.

• No indirection overhead: Because of merging the string object with the character
array, the characters can be addressed directly and no dereferencing of the character
array pointer is necessary.

• Better cache behavior: An original string consists of two separate objects that
might be spread over the heap by the garbage collector. Figure 3.3 shows a possible
memory layout before and after garbage collection. For accessing the string charac-
ters, both parts must be accessed, which leads to a bad cache behavior. Optimized
strings have a good cache behavior because they consist of only one object that
might fit into a cache line.

• No useless bounds checks: Original strings perform two bounds checks when
they are accessed: an explicit bounds check is implemented in the class String

because it is a convention to throw a StringIndexOutOfBoundsException if it fails.
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String 1 char[] 1 String 2 char[] 2 String 3 char[] 3

String 1 char[] 1String 2 char[] 2String 3 char[] 3

(a) Original string: heap before garbage collection

(b) Original string: heap after garbage collection

(c) Optimized string objects

String 1 String 2 String 3

Figure 3.3: Cache behavior of strings

A second implicit bounds check is performed when the character array is accessed.
This duplication does no longer exist for optimized strings.

• Reduced memory usage: An original string has a minimum size of 36 bytes
(including the character array and ignoring the possibility of character array sharing).
The minimum size of an optimized string object is 12 or 16 bytes, depending on the
removal of the field hashcode. Therefore, up to 24 bytes are saved per string object.

These saved bytes result in a percentage of reduced memory usage as shown in Fig-
ure 3.4. Because the string characters are not optimized in any way, the percentage
of reduced memory depends on the string length. The figure illustrates the maxi-
mum savings and ignores the possibility of character array sharing. It also contains
the mean string length for the various benchmark suites. For strings with a length
of 10 characters, the memory usage is reduced by up to 44%. This results in fewer
garbage collections, which affects the performance positively.

• Faster allocation: When an original string object and its character array are allo-
cated, both are fully initialized with default values. Because of a changed allocation
of optimized strings, the string characters no longer need to be initialized with default
values.

• No unused characters: Original string objects might use a far too large character
array because of character array sharing. The garbage collector is not aware of this
and cannot free any unnecessary used memory because it can only determine that the
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Figure 3.4: Reduction of memory usage for the optimized string class (higher is better)

character array is still referenced by a string object. Optimized strings use exactly
the minimum necessary amount of memory for storing the characters.

3.3.2 Disadvantages

• Rewriting: Each method that allocates string objects needs some bytecode rewrit-
ing at class loading. This rewriting process takes additional time but has to be done
only once. Therefore, it adds a negligible overhead compared to the total execution
time. This is the case for both client and server applications.

• Temporary character arrays: For some methods of the class String, the internal
character array is passed to a helper method of another class. This is not possible
for optimized strings because the characters are not stored in a real character array.
Therefore, a temporary character array is allocated to which all string characters are
copied. This character array is then passed to such methods. The copying reduces
the performance and increases the memory usage. This could be optimized further.

• Voided character array sharing: Merging the character array with the string
object precludes character array sharing. Several methods that profited from char-
acter array sharing are therefore degraded in their performance and memory usage.
For example, the method String.substring() only adjusts the fields offset and
count for original strings. No characters must be copied.
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With the optimization, it is necessary to create a new string object where the af-
fected characters are copied to, as illustrated in Figure 3.5. Therefore, the runtime
complexity of the method String.substring() is degraded from O(1) to O(n).

J a v a S t r i gn

0 1 2 3 4 5 6 7 8 9 10

J a v a S t r i gn

0 1 2 3 4 5 6 7 8 9 10

S t r i n

0 1 2 3 4 5

g

String s = "Java String";

String substring = s.substring(5, 11);

(a) Original string (b) Optimized string

Figure 3.5: Method String.substring()
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Chapter 4

Implementation

This chapter describes the implementation details of the optimization. The removal of the
field offset is the first step to slim down string objects. For merging the character array
with the string object, three new bytecodes are introduced. Because these new bytecodes
are only used within the class String, the Java programming language compiler (javac)
is modified to create the optimized string class file. Otherwise, the transformation to the
optimized class would have to be done at runtime, which is less flexible and more effort
to implement. To support the three new bytecodes, they are implemented in the JIT
compiler and the interpreter. At runtime, all methods that allocate string objects must
be modified because the optimization requires changes to the allocation of string objects.
Additionally to the details of the implementation, some non-successful approaches and
particular difficulties are described in this chapter.

The optimization is implemented for the early access version b24 of Sun Microsystems’
Java HotSpotTM VM that is part of the upcoming JDK 7 [29]. Because platform dependent
code is necessary within the interpreter and the just-in-time compiler, the optimization is
currently only implemented for the IA-32 architecture.

4.1 Removing the Field offset

Optimized strings merge the character array with the string object, which precludes char-
acter array sharing. For original string objects, the field offset extends the possibility of
character array sharing and can be removed for optimized strings. The Java source code
of the class String is modified for this. During these modifications, the following three
typical cases occur. All examples in this section represent the state after the removal of



Implementation 29

the field offset and require further changes when the character array is merged with the
string object.

• Most of the time, accesses to the field offset can be deleted or replaced by the
constant 0 without causing any side effects. This has a positive impact on the per-
formance because fewer field accesses are necessary. The method String.charAt(),
shown in Listing 4.1, is an example for this case.

public char charAt(int index) {

... // bounds check

return value[index + offset];

}

public char charAt(int index) {

... // bounds check

return value[index];

}

(a) original (b) removed field offset

Listing 4.1: Method String.charAt()

• If the field offset is used to implement an optimization using character array shar-
ing, more effort is necessary because this kind of optimization is no longer possible.
Optimized strings must copy all characters to a new string object, which costs some
performance. This case occurs for example in the method String.substring(),
as show in Listing 4.2. For original strings, a new string object, which references
the same character array, is allocated and only the fields offset and count are set
accordingly.

public String substring(int beginIndex, int endIndex) {

... // bounds check

return new String(offset + beginIndex, endIndex ‐ beginIndex, value);

}

public String substring(int beginIndex, int endIndex) {

... // bounds check

int newCount = endIndex ‐ beginIndex;

char[] newValue = new char[newCount];

System.arraycopy(value, offset, newValue, 0, newCount);

return new String(newValue);

}

(a) original

(b) removed field offset

Listing 4.2: Method String.substring()
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• In a few cases, the string-internal character array is passed to a helper method of
another class. The characters of optimized strings are no longer stored in a real
character array that could be passed to such a method. Therefore, it would be
necessary to pass the string object itself. For this, the receiving method would have
to be overloaded to allow a string object instead of a character array as an argument.

The decision was made to keep the number of changes to a minimum and therefore
no methods outside of the class String are added or modified. Instead of this, the
string characters are copied to a temporary character array, which is passed to such
methods. This costs some performance and increases the memory usage but could
be optimized further. The method String.getBytes() shown in Listing 4.3 serves
as an example for this case.

public byte[] getBytes(String charsetName) {

if(charsetName == null) throw new NullPointerException();

return StringCoding.encode(charsetName, value, offset, count);

}

public byte[] getBytes(String charsetName) {

if(charsetName == null) throw new NullPointerException();

char[] val = toCharArray();

return StringCoding.encode(charsetName, val, 0, count);

}

(a) original

(b) removed field offset

Listing 4.3: Method String.getBytes()

Internally, the VM uses C++ methods for allocating and manipulating string objects,
which also reference the field offset. These methods are for example invoked during class
loading, when string objects are allocated for the string constants in the constant pool.
Furthermore, offset is also used in several intrinsic methods of the JIT compiler. To
achieve a complete removal of the field offset, these parts of the VM must be modified.
The three described cases for the changes on the Java source code also apply to the methods
within the VM. Listing 4.4 shows a C++ method that calculates the length of an UTF-8
encoded string.
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int java_lang_String::utf8_length(oop java_string) {

typeArrayOop value  = java_lang_String::value(java_string);

int          offset = java_lang_String::offset(java_string);

int          length = java_lang_String::length(java_string);

jchar* position = (length == 0) ? NULL : value‐>char_at_addr(offset);

return UNICODE::utf8_length(position, length);

}

int java_lang_String::utf8_length(oop java_string) {

typeArrayOop value  = java_lang_String::value(java_string);

int          length = java_lang_String::length(java_string);

jchar* position = (length == 0) ? NULL :

java_lang_String::char_base(java_string);

return UNICODE::utf8_length(position, length);

}

(a) original

(b) removed field offset

Listing 4.4: Java HotSpotTM VM method utf8_length

4.2 Removing the Field hashcode

A string’s hash code is computed from its characters using the hash code algorithm that is
specified in the documentation of the class String. Because the hash code depends on the
string characters, two strings with the same characters have the same hash code. When
the hash code of a string object is computed for the first time, it is cached in the field hash-

code to avoid recomputations. This is beneficial because the method String.hashCode()

is invoked often if certain data structures like hashtables are used. However, the field
hashcode uses another four bytes per string object, so that its removal would reduce the
memory usage. Therefore, an alternative memory location must be found where the hash
code can be cached.

As described in Chapter 2.6 on page 14, each Java object has a header of two machine
words. The first machine word is the mark word and caches the identity hash code. The
identity hash code is a random number that is not guaranteed to be unique for each Java
object. Therefore, it should not cause any problems if the identity hash code is equal to
the string hash code for optimized string objects. This allows to use the same memory
location for caching the string hash code and the identity hash code. Therefore, the field
hashcode can be removed without loosing the advantages of caching the hash code.

On 32-bit architectures, the identity hash code is truncated to 25 bit when it is stored
in the mark word. Now, this also applies to the string hash code. The evaluation shows
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that the truncation does not have a negative impact on the performance, but it violates
the specification of the hash code algorithm of the class String. Therefore, the string
optimization is evaluated with and without the removal of the field hashcode. For this,
a command-line option is added to the Java HotSpotTM VM to activate this additional
optimization on demand. On 64-bit architectures the optimization complies with the
specification of the hash code algorithm because the object header is large enough to
hold the hash code without truncation. Two different approaches for removing the field
hashcode are implemented and evaluated:

• If the removal of the field hashcode is activated, the method String.hashCode()

is removed from the method table of the class String. The removal causes the
base class’ hashCode() method to be invoked. The base class for strings is Ob-

ject, which has the native method Object.hashCode(). Alike the method Sys-

tem.identityHashCode(), this method calls into the VM to execute the identity
hash code algorithm there.

This algorithm is modified so that the string hash code is computed for optimized
strings instead. After the computation, the object header’s mark word is merged
with the hash code. If the string is currently locked, this operation is expensive
because an inflated monitor is required to store the hashcode. In the evaluation (see
Chapter 5), it turned out that this implementation has a negative impact on the
performance of some benchmarks.

• The Java method String.hashCode() is changed for this implementation, as shown
in Listing 4.5: the method computes the hash code, truncates it to 25 bit and does not
do any caching as long as the method is executed by the interpreter. Therefore, the
hash code must be computed upon each invocation. This could only be avoided by
introducing a new bytecode for accessing the mark word. If the method is compiled
or inlined, an intrinsic method is used instead. It calculates the hash code once and
caches the result in the mark word. As long as a string object is locked, the hash
code caching is disabled and the hash code is always computed because this is less
expensive.

It is still necessary to modify the identity hash code algorithm within the VM be-
cause the method System.identityHashCode() could be invoked on a string object
before the string hash code is cached. Without the modification, the method Sys-

tem.identityHashCode() would store a random number as the identity hash code.
The later invoked method String.hashCode() would find the cached identity hash
code and would return it as the string hash code.
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public int hashCode() {

int h = 0;

int len = count;

for(int i = 0; i < len; i++) {

h = 31*h + value[i];

}

h = h & 0x1FFFFFF;

return h == 0 ? 0xBAD : h;

}

public int hashCode() {

int h = hashcode;

if(h == 0) {

int off = offset;

char val[] = value;

int len = count;

for(int i = 0; i < len; i++) {

h = 31*h + val[off++];

}

hashcode = h;

}

return h;

}

(a) original (b) optimized hash field

Listing 4.5: Method String.hashCode()

The removal of the field hashcode also has a disadvantage: if the hash code is computed for
a string object, this object can no longer use biased locking (see Chapter 2.6 on page 14).
However, strings are not commonly used for synchronization.

4.3 Character Access

To access the characters of an optimized string, new bytecodes are necessary because the
character array is merged with the string object. The string characters are declared as
private and cannot be accessed directly from outside the class String, so that a method
must be used instead. Therefore, the new bytecodes for accessing the characters of opti-
mized strings are only needed within the class String. This has the advantage that no
existing program must be modified or recompiled for accessing optimized strings. The two
new bytecodes for loading and storing a string character are shown in Figure 4.1.

• scload: The bytecode loads a character from an optimized string, and is similar to
the bytecode caload that is used to access a character array. scload expects two
operands on the stack: a reference to the string object and the index of the accessed
character.

• scstore: This bytecode stores a character in an optimized string, and is similar
to the bytecode castore that is used to store a character in a character array. In
comparison to the bytecode scload, the character to be stored is expected as an
additional operand on the stack.
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...

stringref

scload

...

char

index

...

stringref

...

scstore

index

char

operand 

stack before

operand 

stack after

operand 

stack before

operand 

stack after

Figure 4.1: New bytecodes for accessing a character of an optimized string

Although these bytecodes are similar to the array access bytecodes, they are still required
for two reasons:

• Figure 3.1 on page 22 and Figure 3.2 on page 23 show that the displacement for
accessing characters of arrays and optimized strings is different. To access the first
character of a character array, the correct displacement is 12 bytes. For an optimized
string object, it is 12 or 16 bytes, depending on the optimization level.

• When a character array is accessed, a bounds check is performed. If it fails, an
ArrayIndexOutOfBoundsException is thrown. Optimized strings also need bounds
checks, but it is a convention for the class String to throw a StringIndexOutOf-

BoundsException if the check fails.

Original strings perform two bounds checks when they are accessed: an explicit bounds
check is implemented in the class String that throws a StringIndexOutOfBoundsExcep-

tion if it fails. A second implicit bounds check is performed when the character array is
accessed. Because the new bytecodes throw a StringIndexOutOfBoundsException if the
bounds check fails, the explicit bounds checks can be removed from all string methods.
This reduces the number of bytecodes necessary for accessing a string character and speeds
up the execution. Furthermore, the new bytecodes address the characters directly via the
string object, so that no character array pointer must be loaded and dereferenced. This
further reduces the number of necessary bytecodes. The total size of the class String

is reduced by approximately 6% because of these advantages. Listing 4.6 compares the
bytecodes of the original method String.charAt() with the bytecodes of the optimized
method. The first 20 bytes of the original version perform the explicit bounds check and
are omitted for the listing.
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...

21: aload this

22: getfield value

25: iload index

26: aload this

27: getfield offset

30: iadd

31: caload

32: ireturn

0: aload this

1: iload index

2: scload

3: ireturn

(a) original (b) optimized

Listing 4.6: Bytecodes of the method String.charAt()

4.4 String Allocation

The allocation of optimized string objects is more difficult than accessing their characters,
because the class String has 16 constructors that must be preserved. Otherwise, existing
programs would break. The allocation and the initialization of an object are performed by
two different bytecodes in Java. For the allocation, the size of the object must be known.
Because of merging the character array with the string object, it would be necessary to
know the number of characters that will be stored in the optimized string. However,
this number of characters is usually computed in the string constructor and therefore
not available at the time of allocation. For solving this problem, three approaches were
evaluated:

• The number of characters could be calculated by a string length computation method
that is executed before the allocation. However, this method executes nearly the
same code as the constructor and introduces a significant overhead. Furthermore,
it needs the same parameters as the constructor and would therefore remove them
from the stack, although they are still needed by the constructor. Therefore, the
parameters would have to be pushed on the stack a second time, or a special return
bytecode that leaves the old parameters on the stack would have to be implemented.

• The allocation could push a dummy string reference on the stack that is patched to
the real string object when the number of characters is known. Stack-management
instructions [21] such as dup could duplicate the dummy reference several times.
Therefore, it would be necessary to keep track of the dummy references in order to
patch each occurrence.

• The finally implemented approach replaces the string constructors with factory meth-
ods. For each constructor, a corresponding static factory method is introduced that
takes the same arguments as the constructor. Such a method calculates the string
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length, allocates the string object, and initializes it. Invoking the factory method
therefore replaces the string allocation and the constructor invocation. Because this
is all done in one method, it does not add any overhead. Listing 4.7 shows the factory
method that replaces the constructor String(char[]). However, this approach has
the disadvantage that all string allocations must be modified. The details of this
modification are presented in the next section.

private static String allocate(char value[]) {

int len = value.length;

String string = newstring(len);

stringcopy(value, 0, string, 0, len); 

return string;

}

Listing 4.7: A factory method

Figure 2.4 on page 12 shows the currently used bytecodes for instance and array allocation.
An optimized string object has fields like an instance and a variable size like an array.
Therefore, no existing bytecode is suitable for the allocation of an optimized string object.
Instead, the bytecode newstring is introduced, which is similar the bytecode newarray.
As shown in Figure 4.2, the bytecode newstring expects the string length on the operand
stack. A second operand, such as the element type for arrays, is not necessary because the
number of fields for an optimized string object is fixed and only characters can be stored in
the variable part. This knowledge is used to compute the total size of the optimized string
object, so that the allocation can be performed. The bytecode newstring is exclusively
used within the class String and implements the italic part in Listing 4.7.

...

length

...

stringref
newstring

operand 

stack before

operand 

stack after

Figure 4.2: Stack before and after the execution of the bytecode newstring
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4.5 Bytecode Rewriting

The allocation and initialization of optimized strings is performed by factory methods.
However, all classes that allocate string objects still try to invoke the no longer existing
string constructors and therefore must be rewritten. Because the source code is usually
not available, this must be done at run time. The rewriting adds a negligible overhead
because it is done only once for each class after class loading.

Figure 4.3 shows the separate rewriter component that inspects each class after class load-
ing. All methods that allocate string objects are rewritten. The current implementation
of the bytecode rewriting is a heuristic approach and performs the following three steps,
also shown in Listing 4.8.

class loader

interpreter

JIT compiler

machine codebytecodes

rewriter

modifies compiles generates

executes

class file

loads

Figure 4.3: Bytecode rewriter component

1. Because the factory methods are used for the allocation and initialization of opti-
mized string objects, the original string allocation is removed by replacing it with
no operation (nop) bytecodes. The bytecode new and its arguments have a total
size of three bytes, and therefore three nop bytecodes are used as a replacement. A
complete removal of the affected instructions is not recommended because it would
cause side effects on all jumps within the method. The nop bytecodes are ignored
anyway when the method is compiled. The bytecode new would place a reference
to an uninitialized string object on top of the operand stack. This does not happen
anymore because of the replacement.

2. Because arbitrary code can be between the string allocation and string initializa-
tion, bytecodes like stack-management instructions might use the reference to the
uninitialized string object. However, this reference does not exist anymore because
the string allocation has been replaced with nop bytecodes. Therefore, all bytecodes
that try to operate on the uninitialized string object must be replaced, removed or
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void rewriteMethod(Method method) {

foreach(Bytecode code within method) {

switch(code) {

case new:

if(createsString) {

replaceWithNop();

}

break;

case dup:

if(isBetweenNewStringAndStringInit) {

replaceWithNop();

}

break;

case invokespecial:

if(invokesStringConstructor) {

replaceWithInvokeFactoryMethod();

}

break;

}

} 

}

Listing 4.8: Bytecode rewriting heuristic

rearranged. For this, it would be necessary to parse the bytecodes and to build a
representation where the affected instructions can be identified and modified.

The current implementation is prototypical and handles only the two most common
stack management instructions dup and pop. Because the other stack management
instructions are rarely used, the implementation is still complete enough for running
nearly all Java programs including the various benchmarks presented in Chapter 5.
However, bytecode-optimized applications might use other bytecodes that are not
handled by the current implementation. Although the current implementation does
its best about error detection, it cannot guarantee that all not yet supported instruc-
tions are reported as an error.

3. The last step of the rewriting process replaces the constructor invocation with the
invocation of the static factory method. This rewriting step could be implemented
in two different ways:

• The factory method could be added to the constant pool and the index of the
invoked method could be adjusted. However, this does not work for native code
that uses the JNI because this code is not available as Java bytecode.

• If the invoked method’s constant pool index still points to the string construc-
tor, it is possible to modify the method resolution within the Java HotSpotTM

VM. If a string constructor is to be resolved, the factory method is returned
instead. Applications that use the JNI must retrieve a method identifier before
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invoking a method. Retrieving the method identifier internally uses the method
resolution. Therefore, this approach also works for the JNI and because of this
advantage, this approach is implemented.

Additionally, the method invocation bytecode must be changed from invokespecial to
invokestatic. No other changes are necessary because the factory methods have the
same arguments as the constructors.

Listing 4.9 (a) shows a simple Java method. The method allocates and returns a new
string that is initialized with a character array. The bytecodes of the unoptimized version
are shown in Listing 4.9 (b): the bytecode new allocates an original string object, for which
the size is statically known. This allocation pushes a reference to the string on the stack,
which is duplicated by the stack management instruction dup because it is needed both
for the constructor invocation and the method’s return. Then, a reference to the character
array ch is pushed on the operand stack as the constructor’s parameter. The constructor
is invoked to perform the initialization and the initialized string object is returned.

...

10: new java.lang.String

13: dup

14: aload ch

15: invokespecial constructor

18: areturn

...

10: nop nop nop

13: nop

14: aload ch

15: invokestatic constructor

18: areturn

(b) original bytecode

(c) optimized bytecode

public static String createString() {

char[] ch = ...;

return new String(ch);

}

(a) Java sourcecode

Listing 4.9: Example for bytecode rewriting

For allocating the optimized string object, the rewriter must modify the original byte-
codes. The string allocation and the subsequent reference duplication are replaced by nop
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bytecodes, and the bytecode invokespecial is replaced by invokestatic. The result
is shown in Listing 4.9 (c). Upon execution, the method resolution returns the factory
method instead of the string constructor and therefore the static factory method is invoked
by the bytecode invokestatic.

4.6 Java Programming Language Compiler

The Java programming language compiler (javac) is modified to create the class file for
the optimized class String. The compilation result is packed into a jar file and prepended
to the JVM’s bootstrap classpath to override the default implementation of the class
String. Without the modified version of javac, the original class String would have to
be transformed to the optimized one at runtime. This is less flexible and more effort to
implement. During the code generation of javac, all necessary data structures exist so that
the old bytecodes can be replaced by the newly introduced ones. This version of javac is
only used to create the optimized string class file and is not used for compiling any other
Java source code.

Because the transformation is not performed at run time, it is possible to provide Java-like
source code for the optimized class String. This has the advantage that the optimized
class is easier to understand and to change. However, the semantics of some statements
are adjusted to express the newly introduced bytecodes. The string’s field value, which
references the character array for original strings, still exists in the Java source code of
the optimized class String. It represents the string characters that are now embedded in
the string object. Therefore, the reader must be conscious that although this field looks
and is used like a character array, it is something that cannot be fully expressed in the
Java language. The field value also exists in the generated optimized class file, but it is
filtered when the class file is loaded by the VM.

All existing constructors are replaced by the factory methods described in Chapter 4.4 and
one synthetic constructor is added. This synthetic constructor has the string length as
its only parameter and is used to model the bytecode newstring in the Java source code.
The modified version of javac uses two additional code generation patterns for generating
the optimized class file:

• If the string’s field value is accessed, the bytecodes getfield or putfield are
omitted. These bytecodes would normally use a string reference that is placed on
top of the operand stack. Because they are omitted, the string reference is not
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consumed and can be used by the bytecodes scload or scstore that are emitted
instead of caload or castore.

• The synthetic constructor, which has the string length as its only parameter, is di-
rectly mapped to the bytecode newstring. The string length is pushed onto the
operand stack like any other constructor argument. However, the bytecode new-

string is emitted instead of the constructor invocation.

The result of compiling the method String.charAt() with the modified version of javac
is shown in Listing 4.6 on page 35. The bytecodes for a compilation of a factory method
are shown in Listing 4.10.

private static String allocate(char val[]) {

int len = val.length;

String string = new String(len);

stringcopy(val, 0, string, 0, len);

return string;

}

0:  aload val

1:  arraylength

2:  istore len

3:  iload len

4:  newstring

5:  astore string

6:  aload val

7:  iconst 0

8:  aload string

9:  iconst 0

10: iload len

11: invokestatic stringcopy

14: aload string

15: areturn

Listing 4.10: Factory method compiled with the modified version of javac

4.7 Heap Management Class Hierarchy

The Java HotSpotTM VM uses so called oops for the heap management. Each object on
the heap is an instance of one of the oop classes. Figure 4.4 shows the class hierarchy of the
oops relevant for this master’s thesis. The abstract class oop serves as the base class for
all objects on the heap. Each object on the heap has an object header that consist of the
mark word and the class descriptor. The mark word is a bitfield and the class descriptor is
modeled by the class klassOop. The klassOop is a container for one of the subclasses of
Klass, which are the actual class descriptors for specific data types, e.g. arrayKlass for
Java arrays. The class descriptor is used for the object size calculation, which is essential
for the garbage collector to iterate over all objects on the heap. Furthermore, the class
descriptor object holds additional metadata and is used for reflection.
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Java language objects

oop

mark_word: bitfield

klass_ptr: klassOop*

superclass(): klassOop

oop_size(oop): int

layout_helper(): int

Klass

instanceKlass

methods

fields

klassKlass

instanceKlassKlass

instanceOop

instanceStringKlass

klassOop

klass_part(): Klass*

arrayOop

length: int

arrayKlass

dimension: int

arrayKlassKlass

Figure 4.4: Simplified overview of the used oops in the HotSpotTM VM

The specific oop data structure necessary for the allocation and the management of a
StringBuffer object is illustrated in Figure 4.5. For the allocation of StringBuffer ob-
ject, the class StringBuffer must be loaded. This allocates a klassOop that serves as a
container for an instanceKlass object. The instanceKlass object is the class descriptor
for all StringBuffer objects and stores the information about the fields and methods of
this class. For different Java classes, the instanceKlass objects differ in their size because
Java classes have different numbers of fields and methods. Therefore, instanceKlass ob-
jects need their own class descriptor, for which instanceKlassKlass is used. Because in-
stanceKlassKlass has a fixed size, it uses klassKlass as its class descriptor. klassKlass
has the same fixed size and can therefore use itself as its own class descriptor. After the
class loader finished loading the class StringBuffer, the actual StringBuffer object can
be allocated. Because StringBuffer is a Java class, an instanceOop object is allocated
that references the StringBuffer class descriptor. For arrays, the used classes are similar:
an array on the heap is represented by an arrayOop object. This object has the array
length as an additional field and references an arrayKlass object as its class descriptor.
A Java programmer directly allocates only instanceOop and arrayOop objects.
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StringBuffer object

StringBuffer sb = new StringBuffer();

sbStack

Heap

mark_word: bitfield

klass_ptr: klassOop

all StringBuffer fields

instanceOop

mark_word: bitfield

klass_ptr: klassOop

klassOop

methods

fields

...

instanceKlass

instanceKlassKlass

mark_word: bitfield

klass_ptr: klassOop

klassOop

StringBuffer class descriptor

instance class descriptor

object

header

klassKlass

mark_word: bitfield

klass_ptr: klassOop

klassOop

class class descriptor

...

...Heap

Figure 4.5: Example of all required oops for a StringBuffer object

For optimized strings, the class instanceStringKlass is introduced. This class inherits
from instanceKlass because strings have all characteristics of instances (i.e. fields and
methods). However, the separate class is still necessary because the size computation and
the object allocation are different for optimized strings.

4.8 Layout Helper

During a garbage collection, the garbage collector iterates over all objects on the heap.
For this iteration, the size of each object on the heap must be calculated. Because a
large heap offers enough space for millions of objects, the necessary time for computing
an object’s size must be as low as possible. The simplest implementation of the object
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size computation would call a virtual method of the class descriptor object. However, this
is too slow for a large number of invocations because calling a virtual method adds an
additional indirection step.

The Java HotSpotTM VM implements a fast variant for the size computation of objects,
which uses the so called layout helper field of class descriptor objects. This field only
stores a useful value for instances and arrays. However, these two are the majority on the
heap because no other objects can be allocated directly from Java source code. The layout
helper stores various information based on its bit pattern, as shown in Figure 4.6. The
highest significant bit determines if an object is an instance or an array. Depending on
this, the remaining bits are interpreted differently. The layout helper of instances classes
contains the statically known size. For arrays, more information is necessary for computing
the size: one bit is used to distinguish object arrays and type arrays, the others are used
to store additional data such as the header size, the array element type and the element
size.

1 header size element type log2(element size)

00 instance size

needs_slowpath bit31-30 29-0

15-8 7-029-1631 30

(a) layout helper of instance classes

(b) layout helper of array classes

is_object_array bit

Figure 4.6: Bit patterns of the original layout helper

For all objects that are neither instances nor arrays, the layout helper is zero. This
indicates that the virtual method must be used for the size computation. The encoding
of the layout helper allows efficient processing. To check if an object is an instance, the
instruction test can be used on IA-32 architectures [15]. This instruction does not need
a result register because it only sets the processor flags that are queried for conditional
jumps.

Listing 4.11 shows the code pattern for the fast object size calculation that uses the layout
helper. At the beginning, the layout helper is once queried from the class descriptor. It is
always assumed that the current object is an instance because this is true for the majority
of the objects on the heap. The layout helper’s encoding allows to obtain the instance
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int size(Klass* klass) {

int lh = klass‐>layout_helper();

// assume that lh is the instance size

int s  = lh >> LogHeapWordSize;

if(!is_instance(lh)) {

if(is_array(lh)) {

s = compute_array_size(lh);

} else {

s = klass.size(); // call virtual method

}

}

return s;

}

Listing 4.11: The original fast object size computation

size in heap words by just shifting the layout helper. The next step checks if the current
object really is an instance. If so, the already computed size can be returned immediately,
otherwise it is checked if the object is an array. If this is the case, the array element
type, the array length and the header size are used to compute the total array size. If
the object is neither an instance nor an array, the virtual method is invoked for the size
computation.

The string optimization causes some problems with this existing infrastructure because
optimized strings are instances that do not have a statically known size. Therefore, several
modifications are necessary to support the fast size computation for optimized string
objects. Differentiating between instances, arrays and other objects is not sufficient. The
new layout helper, shown in Figure 4.7, distinguishes between objects with a fixed size,
objects with a computed size, and other objects. The header size and the element size
are still byte aligned because this allows direct access on IA-32 architectures. Separate
bits are used to store if an object is an instance or an array. This has the advantage that
the layout helper could also be used for VM internal objects that are neither instances
nor arrays. For this purpose, the length offset is introduced for the computed-size layout
helper. It could be used to determine the location, where the object’s number of elements
is stored. However, the current implementation does not use the layout helper for objects
other than instances, arrays and strings. Furthermore, the length offset is also currently
not used because the field length of arrays has exactly the same offset as the field count

for optimized strings. Therefore, the length offset is grayed out in Figure 4.7.

The changes to the layout helper require several modifications of other parts of the Java
HotSpotTM VM because the layout helper is also used in platform dependent code for the
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allocation of instances and arrays. However, as shown in Listing 4.12, only few changes
are necessary for the code pattern that is used for the fast object size calculation.

tag element type log2(element size) length offsetheader size

is_no_instance bit

tag instance size

is_no_instance bit

needs_slowpath bit

31-29 29-24 23-16 7-115-8 0

31-29 29-0

(a) fixed-size layout helper

(b) computed-size layout helper

(c) possible tag values

computed_size bit

is_array bit

is_object_array bit

1 1 1object array

0 0 0instance

1 0 0string object

instance-size 0

... 1

... 0

1 1 0type array ... 1

Figure 4.7: Bit patterns of the new layout helper

int size(Klass* klass) {

int lh = klass‐>layout_helper();

// assume that lh holds the object size

int s  = lh >> LogHeapWordSize;

if(!has_fixed_size(lh)) {

if(size_must_be_computed(lh)) {

s = compute_size(lh);

} else {

s = klass.size(); // call virtual method

}

}

return s;

}

Listing 4.12: The new fast object size computation
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4.9 Interpreter

The interpreter uses machine dependent code templates for the bytecode execution. These
templates are specified in assembler language and are translated to machine code without
applying any optimizations at the startup of the Java HotSpotTM VM. To support the
three new bytecodes, the interpreter requires appropriate code templates. Because the
templates are machine dependent, they are currently only implemented for the IA-32
architecture.

Listing 4.13 shows the interpreter code patterns for the bytecodes scload and scstore

that are used for loading and storing string characters. The implementation is similar to
the bytecodes caload and castore that are used for accessing a character array. Some
of the necessary operands are already received in registers because they are results from
previous computations. Others must be popped from the operand stack. To ensure that
the index, which is used for accessing the string object, addresses a character within the
string, a bounds check is performed. If the check fails, the index does not address a valid
character and an StringIndexOutOfBoundsException is thrown. In the last step, the
string character is read or written and if necessary, the result is returned in a specific
register.

void TemplateTable::scload() {

// rdx: string, rax: index

string_index_check(rdx, rax);  

load_unsigned_word(rbx, Address(rdx, rax, Address::times_2,

java_lang_String::value_offset_in_bytes()));

movl(rax, rbx);

}

void TemplateTable::scstore() {

// rax: value, rdx: string

pop_i(rbx); // get index

string_index_check(rdx, rbx);

store_unsigned_word(Address(rdx, rbx, Address::times_2, 

java_lang_String::value_offset_in_bytes()), rax);

}

Listing 4.13: Interpreter code patterns for caload and castore

For the bytecode newstring, an interpreter template is difficult to implement because
the whole string allocation would have to be done in assembler. This would result in a
code pattern similar to the one used for the bytecode new. However, the major problem
is that the newly allocated string object must reference a valid class descriptor. When
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the interpreter templates are translated to machine code, the class String is not yet
loaded and therefore the string class descriptor does not exist and cannot be accessed.
It would be possible to solve this problem by the early creation of a fixed string class
descriptor. However, this would reduce the flexibility. The bytecode newarray has a
similar problem and solves it by moving the allocation into a method of the interpreter
runtime. The interpreter code template only passes the appropriate arguments to this
method and performs the method invocation. This interpreter runtime method is not
called during the translation of the interpreter templates, so that the access to the string
descriptor does not cause any problems. Therefore, a similar approach is used to implement
the allocation of optimized string objects, as shown in Listing 4.14.

void TemplateTable::newstring() {

call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newstring), rax);

}

void InterpreterRuntime::newstring(JavaThread* thread, jint size) {

Handle obj = java_lang_String::create(size, CHECK);

thread‐>set_vm_result(obj());

}

Listing 4.14: Interpreter code pattern for newstring

4.10 Just-in-Time Compiler

To achieve comparable evaluation results, the new bytecodes are also implemented for
the IA-32 architecture of the client compiler. Multiple modifications and extensions are
necessary to support optimized string objects. The changes to the layout helper also
require some other changes in the client compiler. The client compiler uses a high-level
and a low-level intermediate representation, as described in Chapter 2.4.2 on page 10.
Both representations are modeled as C++ class hierarchies. A small subset of the high-
level intermediate representation (HIR) class hierarchy is presented in Figure 4.8.

The class Instruction is the abstract base class for all HIR instructions. The whole
class hierarchy consists of 15 abstract classes and 47 classes that represent specific HIR
instructions. For the allocation of optimized string objects, the class NewString is added to
the class hierarchy. Because accessing a string character is similar to accessing a character
array, the functionality of the classes StoreIndexed and LoadIndexed is extended to
support optimized string objects. For this purpose, a boolean flag is added to the abstract
class AccessIndexed that is the base class of StoreIndexed and LoadIndexed. The
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Instruction

Local AccessArray

ArrayLength AccessIndexed

is_string: boolean

LoadIndexedStoreIndexedStateSplit

NewInstance NewStringNewArray

NewTypeArray NewObjectArray NewMultiArray

Figure 4.8: Subset of the HIR class hierarchy

subsequent low-level intermediate representation (LIR) generation uses this boolean flag
to emit the correct LIR instructions. Because the same HIR instructions as for accessing
an array are used for accessing optimized strings, all implemented optimizations for these
instructions (e.g. bounds check elimination) are automatically applied to optimized strings
as well.

Figure 4.9 shows a subset of the LIR class hierarchy that has 20 classes. The base class
for all LIR instructions is LIR_Op that stores a LIR operation code. More than 80 LIR
operation codes are used to model the actual instructions. For example, the instruction
push uses a LIR_Op1 object, where the LIR operation code is set to push. Therefore, a
LIR class can be used for multiple instructions, which simplifies the class hierarchy. The
LIR operation codes are used by the subsequent operations on the LIR, e.g. the code
generation uses them to emit the correct machine code.

The class LIR_OpAllocArray is extended so that it can also be used for the allocation
of optimized string objects. For this purpose, a new LIR operation code is introduced.
For accessing the characters of optimized string objects, no additional LIR classes or LIR
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LIR_Op

code(): LIR_Code

emit_code(): void

LIR_OpStringHashCode LIR_OpAllocArray

LIR_OpArrayCopy

LIR_Op1

LIR_OpBranch LIR_OpAllocObj

Figure 4.9: Subset of the LIR class hierarchy

operation codes are necessary because the HIR can be translated to already existing LIR
instructions.

The method System.arraycopy() can no longer copy characters from or to an op-
timized string because the characters are not stored in a character array anymore.
However, System.arraycopy is faster than a loop in Java because some bounds
and type checks are omitted. Therefore, similar methods are introduced for opti-
mized string objects: String.stringToStringCopy(), String.stringToCharCopy() and
String.charToStringCopy(). These three methods copy the characters between two
strings or between a character array and a string. A method charToCharCopy() is not
necessary because this is implemented by System.arraycopy(). The new methods are
compiler intrinsics that share most of its code with System.arraycopy(). Therefore, the
class LIR_OpArrayCopy is also used to represent these new methods in the LIR. However,
each method has its own LIR operation code that the code generation uses to emit the
appropriate machine code.

For the removal of the field hashcode, a compiler intrinsic is used for the
method String.hashCode(). To represent this intrinsic in the LIR, the class
LIR_OpStringHashCode and a new LIR operation code are added. The actual in-
trinsic method is specified in assembler and performs the steps shown in Listing 4.15.
If the string is unlocked, its mark word might already store a hash code. If no valid
hash code is present, or the string is not in the unlocked state, the hash code must be
computed. After the computation, the hash code can be only stored in the mark word if
the string is either unlocked or biasable.
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int hashCode() {
int hashcode = 0;

if(this.isUnlocked()) {
hashcode = extractHashCode(this.markWord);

}

if(hashcode == 0) {
hashcode = computeHashCode(this);
if(hashcode == 0) hashcode = 0xBAD;

if(this.Unlocked() || this.isBiasable()) {
cacheHashCode(this, hashcode);

}
}

return hashcode;
}

Listing 4.15: String.hashCode() compiler intrinsic

4.11 Elimination of Explicit String Copying

Copying strings by invoking the constructor String(String) is nearly useless because
strings are immutable. For original strings, the internal character array is trimmed on an
explicit copy, i.e. if only a part of the referenced character array is in use, a new character
array is allocated where the used characters are copied to. Optimized strings always use
all their characters, so that explicit copies are useless. However, these copies still cannot
be removed easily because of two reasons:

• Object equality: If no explicit string copy is allocated, the semantics of string
object equality checks can change. This might influence the program behavior in an
unexpected way.

• Synchronization: In Java, any object can be used as a monitor for synchronization.
When a string object is used as a monitor, the program behavior might change if no
explicit string copy is allocated.

For removing explicit string copying, these cases would have to be detected. However, both
cases are uncommon and therefore the elimination of explicit string copying was imple-
mented without a detection mechanism. Because this additional optimization is unsafe,
it is evaluated separately. For the allocation of optimized string objects, static factory
methods are used instead of constructors. Therefore, the implementation is easy: the fac-
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tory method String.allocate(String) returns the string parameter without allocating
a copy, as shown in Figure 4.10.

private static String allocate(String original) {

int len = original.length();

String string = new String(len);

stringcopy(original, 0, string, 0, len);

return string;

}

private static String allocate(String original) {

return original;

}

(a) explicit copying

(b) elimination of explicit string copies

Figure 4.10: Explicit string copying factory method
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Chapter 5

Evaluation

The optimizations are implemented for the early access version b24 of Sun Microsystems’
JDK 7 [29]. Because several parts of the implementation are platform dependent, the string
optimization is currently only implemented for the interpreter and the client compiler of
the IA-32 architecture. The SPECjvm98 [26], SPECjbb2005 [27], and the DaCapo [3]
benchmarks are used for the evaluation. Separate benchmark runs are executed for mea-
suring the performance and the number of allocated bytes. Additionally, two different
machines are used for the measurements:

• Laptop: An Acer Aspire 5652 Laptop with an Intel Core Duo processor with 2
cores running at 1.6 GHz, 2 MB L2 cache, 1 GB main memory, and with Windows
XP Professional as the operating system, is used as a typical consumer machine.
Because this system changes the processor’s clock rate even while benchmarking, it
is permanently throttled to its minimum: 1.0 GHz per core.

For accurate results, each measurement is repeated five times for the benchmarks
SPECjbb2005 and DaCapo, and 15 times for SPECjvm98. The mean values of these
runs are reported as the results. Furthermore, each benchmark is executed with
multiple heap sizes to evaluate the effect on the optimization.

• Workstation: An Intel Core2 Quad processor with 4 cores running at 2.4 GHz,
2 * 2 MB L2 cache, 2 GB main memory, and with Windows XP Professional as the
operating system, is used to evaluate the optimization on a more powerful machine.
To achieve accurate results, each measurement was repeated 12 times and the mean
values are reported.
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The three benchmark suites were executed on both machines with multiple configura-
tions:

• The unmodified Java 7 build b24 is the baseline configuration.

• The configuration “no offset” removes the field offset from the class String. The
character array is still a separate object, so that character array sharing is possible
for explicit string copies. The results indicate if the removal of the field offset is
sufficient for a performance gain, or if the other optimizations have a larger positive
impact. Although the removal of the field offset would save 4 bytes per string
object, this advantage is voided because of the alignment of Java objects.

• The configuration “optimized” uses all presented optimizations except the removal
of the field hashcode.

• The configuration “overhead” uses the same optimizations as the configuration “op-
timized”, but adds an artificial padding of 20 bytes per string object. This results
in strings that have the same size as original strings including the character array.
The results for this configuration show the impact of the optimizations without the
advantage of reduced memory usage. Furthermore, it indicates how much character
array sharing a benchmark uses: the difference between the number of allocated bytes
of this configuration and the baseline are the bytes that are allocated additionally
because character array sharing is precluded. In comparison with the configuration
“optimized”, this configuration shows the impact of the reduced memory usage on
the performance.

• The configuration “optimized hash field” uses all presented optimizations including
the removal of the field hashcode. For removing the field hashcode, the implementa-
tion variant with the intrinsic method is used (see Chapter 4.2 on page 31). Because
only the IA-32 architecture is evaluated, the hash code is always truncated to 25 bit.
The SPECjbb2005 benchmark compares during its startup the hash code of a string
object with a hardcoded value. If this value does not match, the benchmark stops
the execution. Therefore, this check was removed. However, the removal does not
influence the results because this check is only performed once during the startup of
SPECjbb2005.

• The “slow hash field” configuration is reported additionally for the SPECjvm98
benchmark. It also uses all presented optimizations like the “optimized hash field”
configuration, but implements the removal of the field hashcode differently. It re-
moves the method String.hashCode() so that the base class method is invoked
instead (see Chapter 4.2 on page 31). The configuration is only reported for the
SPECjvm98 benchmark because the results does not show any significant difference
results than the configuration “optimized hash field” for the other benchmarks.
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The configurations “optimized”, “overhead” and “optimized hash field” use the same mod-
ified VM. A specific configuration is selected by a command-line option. Because the
configurations need different String class files, a jar file with the appropriate class String
is prepended to the bootstrap classpath. The configurations baseline, “no offset” and“slow
hash field” each use their own VM. The appropriate class String is directly contained in
the file rt.jar.

5.1 SPECjbb2005

The SPECjbb2005 benchmark represents a client/server business application. Transac-
tions are performed on a database that is held in the physical memory. A benchmark
run is split up into measurements for a specific number of warehouses. Each warehouse
is executed as a separate thread, i.e. if 8 warehouses are executed, 8 threads are perform-
ing transactions on the database. Furthermore, the size of the database increases with
the number of warehouses so that less memory is available for executing the transactions.
Therefore, the heap fills up faster and more garbage collections occur.

For a specific number of warehouses, transactions are executed for 240 seconds on the
database. The total transaction throughput on the database is measured in SPECjbb2005
business operations per second (bops). The official SPECjbb2005 result is computed as the
mean value of results for specific numbers of warehouses. Which numbers of warehouses
are used for the computation depends on the number of processors/cores. The warehouses
2, 3, 4 and 5 contribute to the official result on the laptop, and the warehouses 4, 5, 6, 7 and
8 on the workstation. The benchmark uses lots of string operations, so the optimization
can show its potential. Unless stated otherwise, a heap size of 1200 MB is used for all
measurements on the workstation and 512 MB on the laptop. Because each number of
warehouses is measured for 240 seconds, the number of allocated bytes depends on the
performance. Therefore, a modified version that executes a fixed number of transactions
is used for measuring the number of allocated bytes. All percentage values are relative to
the baseline.

Figure 5.1 shows some SPECjbb2005 results for the workstation and the laptop. The per-
formance shows a good increase for the optimized configurations because this benchmark
is string intensive. The workstation shows a slightly larger performance increase than
the laptop because of the improved garbage collection time. The serial garbage collection
algorithm, which the Java HotSpotTM VM uses per default, is a bottleneck if more cores
are available. Each time a garbage collection is necessary, the whole program execution is
stopped and the garbage collection is performed by only one processor/core. Because more
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Figure 5.1: SPECjbb2005: benchmark results
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Figure 5.2: SPECjbb2005 workstation: performance (higher is better)
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Figure 5.3: SPECjbb2005 workstation: garbage collection time (lower is better)
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Figure 5.4: SPECjbb2005 laptop: performance (higher is better)
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Figure 5.5: SPECjbb2005 laptop: garbage collection time (lower is better)
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cores are unused during the garbage collection on the workstation, the reduced garbage
collection time has a larger positive impact. This also indicates the configuration “over-
head” that increases the garbage collection time. On the workstation, this results in a
larger performance decrease than on the laptop. However, the performance is still higher
than the baseline. Additional performance measurements with a heap size of 256 MB and
384 MB were performed on the laptop. These runs show similar results, but indicate that
the performance increases for the optimized configurations in comparison with the baseline
when the heap size is smaller. This is an effect of the reduced memory usage.

For measuring the number of allocated bytes independently of the performance, a modified
version of SPECjbb2005 is used that executes a fixed number of transactions on four ware-
houses. The used memory after a garbage collection is an approximation of the minimum
heap size of an application and is significantly improved for the optimized configurations.
The total number of allocated bytes is only slightly reduced because the benchmark uses
a high number of explicit string copies. The configuration “no offset” only uses character
array sharing for explicit string copies and allocates approximately the same number of
bytes as the baseline. The configuration “overhead” uses no character array sharing at all
and allocates significantly more memory.

The time necessary for garbage collection is reduced for the optimized configurations be-
cause an optimized string needs only one object. Original strings consist of two distinct
objects that both must be garbage collected. The slightly reduced number of allocated
bytes also has a positive impact on the garbage collection time because the heap does not
fill as fast and therefore fewer garbage collections are necessary.

Figure 5.2, 5.3, 5.4 and 5.5 show the performance and the garbage collection time for
the laptop and the workstation. Each configuration was executed with a heap size of
512 MB, up to the number of warehouses where an OutOfMemoryException is thrown.
The performance increases up to the peak number of warehouses, i.e. four warehouses for
the workstation, two warehouses for the laptop. Subsequently, the performance decreases
because the higher number of threads increases the overhead and because the memory
resident database uses a larger part of the total available memory. Because the minimum
heap size of the benchmark is reduced for the optimized configurations, it is possible to
execute up to 24 instead of 19 warehouses. The performance is far better especially for a
high number of warehouses. A clear correlation between the performance and the garbage
collection time can be observed: the performance decreases as the garbage collection time
increases. The workstation’s garbage collection time increases much faster than the lap-
top’s because the workstation executes far more transactions on the database, so that the
heap fills faster and more garbage collections are necessary.
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Figure 5.6 shows the average used memory after a full garbage collection on the laptop.
No full garbage collection occurs during the run of the first warehouse. The memory usage
increases with the number of warehouses, but the increase is significantly slower for the
optimized configurations. The positive effect of removing the field hashcode can also be
clearly seen for these results.

5.2 Elimination of Explicit String Copying for

SPECjbb2005

About 19% of all string allocations in the SPECjbb2005 benchmark are explicit string
copies. These string copies are only used for trimming the internal character array of orig-
inal strings and can therefore be removed if the string optimization is active. The results
in this section indicate which performance increase could be expected if the programmer
knows that the allocation of explicit string copies is unnecessary.

Figure 5.7 shows some SPECjbb2005 results. Because of the elimination of explicit string
copying, fewer objects must be allocated and fewer characters must be copied. In compar-
ison to the results from the previous section, the performance increases significantly for
the optimized configurations. However, the workstation shows a far larger performance
increase than the laptop because of the improved garbage collection time. The used mem-
ory after a garbage collection and the number of allocated bytes are both significantly
reduced for the optimized configurations. This also has a positive impact on the garbage
collection time. The configuration “overhead” allocates approximately the same number
of bytes as the baseline but the garbage collections are much faster because an optimized
string needs only one object.

Figure 5.8, 5.9, 5.10 and 5.11 show the performance and the garbage collection time for
the laptop and the workstation. As in the previous section, it is possible to execute up to
24 instead of 19 warehouses for the optimized configurations because of the benchmark’s
improved minimum heap size. The reduced number of allocated bytes results in fewer
garbage collections, which reduces the total garbage collection time. In comparison to the
previous section, the performance of the optimized configurations is generally higher and
decreases slower with an increasing number of warehouses.

Figure 5.12 shows the average used memory after a full garbage collection on the laptop.
Again, no full garbage collection occurs during the run of the first warehouse. In compar-
ison to the previous results, less memory is used after a full garbage collection. However,
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Figure 5.7: SPECjbb2005: benchmark results
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Figure 5.8: SPECjbb2005 workstation: performance (higher is better)
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Figure 5.9: SPECjbb2005 workstation: garbage collection time (lower is better)
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Figure 5.10: SPECjbb2005 laptop: performance (higher is better)
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the reduction is not enough to execute more warehouses than without the elimination of
explicit string copying.

5.3 DaCapo

Eleven object-oriented applications form the DaCapo benchmark suite release 2006-10-
MR2. Each benchmark is executed five times in the same JVM, so that the execution
time converges because all relevant methods are compiled. This results in a slowest run
that measures the startup time of the JVM and a fastest run that indicates the achievable
peak performance. These two results are presented for each benchmark. Additionally, the
geometric mean of all benchmark results is presented. Unless stated otherwise, a heap size
of 256 MB is used on both machines for all benchmarks.

The performance results for the DaCapo benchmark suite are presented in Figure 5.13
and Figure 5.14. The light bars refer to the slowest run, the dark bars to the fastest run.
Both runs are shown on top of each other relative to the fastest run of the baseline. For
nearly all benchmarks, the slowest and the fastest runs are improved on the workstation
and the laptop. However, it depends on the benchmark if it shows a higher speedup on
the laptop or on the workstation. The benchmark hsqldb shows a significant speedup for
the workstation and a slight decrease on the laptop.

The benchmark chart shows on both machines the largest speedup. Some other bench-
marks with a speedup on both machines are antlr, eclipse and jython. Because the con-
figuration “overhead” shows a similar performance as the configurations “optimized” and
“optimized hash field”, the memory usage reduction has only a small impact on the re-
sults of this benchmark suite. The removal of the field offset alone is not sufficient for
a significant speedup. It has a negative impact for some benchmarks, and a positive one
for some others. Additional performance measurements with a heap size of 96 MB and
128 MB were performed on the laptop. These runs show no significant difference to the
presented results.

The number of allocated bytes for the DaCapo benchmarks are shown in Figure 5.15. The
benchmarks chart, luindex, and bloat need to allocate far less memory, but the benchmark
jython shows a contrary result. Because character array sharing is no longer possible for
optimized string objects, new strings are allocated and the characters must be copied.
Nevertheless, the performance still shows a speedup. The configurations “no offset” and
“overhead” need to allocate more memory than the baseline, which indicates that the Da-
Capo benchmark suite uses a significant amount of character array sharing. Furthermore,
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Figure 5.13: DaCapo workstation: performance (higher is better)
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Figure 5.14: DaCapo laptop: performance (higher is better)
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Figure 5.15: DaCapo: number of allocated bytes (lower is better)
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the number of garbage collections was measured: the number of full garbage collections
is not affected by any of the configurations, and the number of minor garbage collections
shows the same reduction as the number of allocated bytes.

When executing this benchmark with the elimination of explicit string copying, no signifi-
cant different results are measured because the benchmark uses hardly any explicit string
copying.

5.4 SPECjvm98

Seven benchmarks that represent typical client applications are included in the
SPECjvm98 benchmark suite. Each benchmark is executed multiple times in the same
JVM, until the execution time converges. Similar to the DaCapo benchmark, the slowest
and the fastest run as well as the geometric mean over all benchmarks are reported.

Figure 5.16 and Figure 5.17 show the performance results for the workstation and the
laptop. The slowest and the fastest runs for a benchmark are shown on top of each other.
The light bar refers to the slowest run, the dark bar to the fastest run. The string opti-
mization has only a positive impact on the string intensive benchmarks. The performance
of the other benchmarks is neither improved nor degraded. Especially the benchmark db,
which is string intensive, profits from the string optimization. This benchmark shows a
far larger speedup on the workstation.

The configuration“slow hash field” shows a significant negative impact on the performance
of the benchmark jack. This configuration implements the removal of the field hashcode by
invoking the native method Object.hashCode(). The invocation of a native method has a
small overhead in comparison to the invocation of a Java method. Because the benchmark
jack runs only a very short time and computes lots of string hash codes, the summarized
overhead reduces the performance significantly. Furthermore, no optimizations are applied
to native methods and they are not inlined.

Figure 5.18 shows the number of allocated bytes for the SPECjvm98 benchmark suite.
The benchmarks javac, jack, and db show a reduction of the memory usage. Because the
number of allocated bytes decreases only slightly for the db benchmark, the main speedup
results from the reduced number of field accesses and the better cache behavior. The
“no offset” and “overhead” configurations need to allocate significantly more memory than
the baseline for the jack benchmark. This indicates that this benchmark uses character
array sharing. However, the optimized configurations still need to allocate less memory
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Figure 5.16: SPECjvm98 workstation: performance (higher is better)
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Figure 5.17: SPECjvm98 laptop: performance (higher is better)
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Figure 5.18: SPECjvm98: number of allocated bytes (lower is better)
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than the baseline. Furthermore, the number of garbage collections was measured: the
number of full garbage collections is not affected by any of the configurations, and the
number of minor garbage collections shows the same reduction as the number of allocated
bytes. In general, the optimized configurations reduce the memory usage and improve
the performance without a significant negative effect on any of the benchmarks. An
additional performance measurement with a heap size of 32 MB was performed on the
laptop. However, no significant difference to the presented results was measured.

When executing this benchmark suite with the elimination of explicit string copying,
nearly no significant difference to the results above is measured because it does not use
much explicit string copying. Only the performance of the benchmark javac improves
slightly.
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Chapter 6

Related Work

Boldi et al. implemented a MutableString class that combines the advantages of the
classes String and StringBuffer [4]. A MutableString can be in the state “compact”
or “loose”. Depending on this state, the MutableString has either the advantages of the
class String or StringBuffer. If the capacity of the string is no longer sufficient because
of string concatenation, and the string’s state is “compact”, the MutableString is resized
exactly to fit the content. If it is in the state “loose”, the size of the character array is
doubled. To allow subclasses, the class is not final and it allows the direct access to the
character array without any restrictions. This direct access is potentially unsafe and must
be used carefully by the programmer. In contrast to the optimization presented in this
thesis, existing programs must be changed and recompiled to use the advantages of this
new class. Furthermore, their optimization does not reduce the memory usage.

Tian addressed the performance problem of string concatenations [30]. If two string objects
are concatenated, a new temporary StringBuilder or StringBuffer object is allocated,
to which the characters of both strings are copied. On this temporary object, the method
toString() is invoked to allocate the resulting string, which again copies all characters.
Using the Java bytecode optimization framework Soot [31], a bytecode transformation
was implemented that removes redundant buffer allocations and reuses existing buffers for
the concatenation. With this transformation, the performance of string concatenation is
improved nearly up to the performance of the class StringBuilder. This optimization
must be applied directly to the class file, while the optimization presented in this thesis
is performed automatically behind the scenes by the VM and covers more than string
concatenations.

Ananian et al. implemented several techniques to reduce the memory usage of object-
oriented programs [1]. These techniques include field reduction and the elimination of
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unread or constant fields. The value range for each field is analyzed to replace the datatype
with a less space consuming one. Furthermore, static specialization is used to create two
different string classes: one string class without the field offset (SmallString) and one
with the field offset (BigString). If the offset is zero, a SmallString is allocated,
otherwise a BigString. An evaluation with the SPECjvm98 benchmark suite showed
that the maximum live heap size is reduced by up to 40%. Some of the optimizations
have a negative impact on the performance, which manifests in a performance change
from -60% to +10% for the SPECjvm98 benchmark suite. The approach presented in this
thesis optimizes only string objects, but always removes the field offset and merges the
string’s character array with the string object to save additional memory.

Chen et al. implemented two different approaches to reduce the memory consumption. A
heap compression algorithm was implemented that targets memory constrained environ-
ments such as mobile devices. It reduces the minimum heap size that is necessary for the
execution of an application [7]. A Mark-Compact-Compress-Lazy Allocate garbage collec-
tor is its basic component. To reduce the compression and decompression overhead, large
instances and arrays are split into multiple objects that can be compressed and decom-
pressed independently. Lazy allocation delays the allocation of parts of large arrays that
are not used immediately. For the heap compression, an arbitrary compression algorithm
can be used. The evaluation was done with a “zero removal” compression algorithm, and
showed that 35% of memory can be saved on average. In contrast to the optimization
presented in this thesis, the compression can be applied to all kinds of Java objects, but
has a negative impact on the performance.

The second approach exploits frequent field values to reduce the memory usage [8]. It uses
the fact that a small number of distinct values appear in lots of fields. Based on this, two
object compressions are proposed to reduce the memory usage. The first one is specialized
on fields that are zero or null. The other one is used for fields with other frequent values.
To determine fields that can be optimized, the application is executed with various inputs.
This information is written in a separate description file that the JVM uses to perform the
optimization. Depending on the program inputs, the description file varies, which affects
the performance and the memory usage differently. The evaluation with the SPECjvm98
benchmark suite shows that the minimum heap size is reduced by up to 24% (14% on
average). The loss of performance is below 2% for most cases. The optimization presented
in this thesis focuses on strings but shows a reduction of memory usage and a speedup for
string-intensive benchmarks.

Dolby et al. implemented object inlining in a static compiler for a dialect of C++ [10].
This optimization can merge some referenced objects with the referencing one, and is not
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limited to string objects. This improves the cache behavior and reduces the indirection
overhead. A field is a candidate for inlining when all its uses can be located and when the
relationship between the parent and the child object is unambiguous. For this, a global
data flow analysis is necessary that takes up to half of the compilation time. The average
speedup for the C++ benchmarks is 10% with a maximum of 50%. The optimization
presented in this thesis is performed at run time in a virtual machine and only has a
negligible analysis overhead.

Wimmer et al. implemented object inlining for the Java HotSpotTM VM [33, 34]. To
determine fields worth inlining, read barriers are used. The just-in-time compiler ensures
that the candidate field is not overwritten and that the objects are allocated together.
This is necessary because the referencing and the referenced objects must be located next
to each other in the heap. Therefore, also the garbage collector was modified to ensure
that inlined objects are not separated. The optimization is performed automatically at run
time, but cannot optimize strings because a character array can be used by multiple string
objects. The mean peak performance of the SPECjvm98 benchmark suite is improved by
up to 51% (9% on average).

BEA Systems, Inc. has a patent pending to address the inefficiency of StringBuilder

and StringBuffer operations [19]. When a string is appended to a StringBuilder or
StringBuffer, all characters are copied to the buffer’s character array. If the size of this
character array is no longer sufficient, a larger character array is allocated, to which all
characters must be copied. When the toString() method is invoked, the characters are
copied another time to the resulting string object. Therefore, it is more efficient to store the
references to the string objects instead of copying the characters to a buffer. Additionally,
a larger variety of append() methods reduces the number of method invocations. When
the toString() method is invoked, an appropriate character array with the size of the
summed up length of all string parts can be allocated. All characters are copied to this
character array, which is then referenced by the resulting string object. This optimization
is beneficial for string concatenation, while the optimization presented in this thesis is
advantageous to the usage of string objects in general.

Zilles implemented accordion arrays for Java to reduce the memory usage of character
arrays [35]. Java characters arrays are always Unicode-based, even if the top bytes of
the characters are zero. Storing these characters as bytes instead of Unicode characters
saves 50% of the memory. However, code that accesses character arrays must determine
dynamically if the array uses one or two bytes for storing each character. If an Unicode
character is to be stored in an array that uses only one byte for storing each character, the
array must be inflated. The performance improves by 8% for the SPECjbb2005 benchmark
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and by 2% for the DaCapo benchmark. The size of the live objects is reduced by up to
40%. By reducing the memory usage of character arrays, memory is also saved for string
objects. The optimization presented in this thesis does not compress any characters, but
merges the string object and the character array to improve the performance and to reduce
the memory usage.

Shuf et al. distinguished between frequently allocated (prolific) and rarely allocated (non-
prolific) types. Based on this, several optimizations were implemented for the Jalapeño
VM. A type based garbage collector that distinguishes between prolific and non-prolific
types increases the data locality and reduces the garbage collection time by up to 15% [24].
Additionally, a short type pointer technique eliminates the one machine word type pointer
for prolific types by adding some small type information to the mark word. This reduces
the memory requirements by up to 16%. Furthermore, two approaches to improve the
locality of Java applications were implemented [25]. The first one allocates prolific objects
that are connected by references next to each other in the memory. The second approach
uses locality based graph traversal to reduce the garbage collection time and to increase
the locality. Benchmark results for SPECjvm98, SPECjbb2000, and jOlden show that a
combination of both approaches improve the performance by up to 22% (10% on average),
if a non-copying mark-and-sweep garbage collector is used. The presented optimization
in this thesis improves the locality for string objects by merging strings with its character
array. This also reduces the garbage collection time and the memory usage.

Casey et al. introduced new bytecodes to increase the performance of a Java interpreter [6].
Because some operands are frequently used for specific bytecodes, specialized bytecodes
with hardwired operands reduce the required operand fetching. Furthermore, additional
bytecodes are introduced that combine common bytecode sequences. Instruction replica-
tion is another technique that uses multiple implementations for one bytecode to reduce
indirect branch mispredictions. Which implementation of the bytecode is executed de-
pends on the subsequent bytecodes. Results for the SPECjvm98 benchmark show an
average speedup of 30% to 35%. The optimization presented in this thesis also uses new
bytecodes. However, they are required for the implementation of the optimization and are
not mainly used to improve the performance.
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Chapter 7

Conclusions

The presented string optimization merges the string and its character array into a single
object. For this purpose, new bytecodes are introduced and the constructors of the class
String are replaced by factory methods. Therefore, all string allocations must be rewritten
at run time. The Java HotSpotTM VM automatically performs the optimization at run
time so that no actions on part of the programmer are required. The evaluation shows the
high potential of the optimization. It has a significant positive impact on the performance
and reduces the memory usage for string intensive benchmarks. Furthermore, the garbage
collection time is reduced because the garbage collector must handle only one object per
string.

7.1 Problems and Further Improvements

Under the scope of this master’s thesis, a prototype of the string optimization was imple-
mented to show the potential of the optimization. Most problems encountered during the
implementation could be solved. However, some not as crucial problems were not solved
for the prototype. If this optimization is to be integrated in a product version of the Java
HotSpotTM VM, the following remaining problems must be solved:

• Reflection: The optimization replaces the String constructors with factory meth-
ods. Therefore, no constructors can be accessed via reflection. A similar approach as
used for the method resolution of the factory methods could be a possible solution:
if a specific constructor is requested, the appropriate factory method could be re-
turned instead. For this, some additional changes in the Java HotSpotTM VM would
be necessary. However, this solution might cause problems on the Java side because
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the static factory method would be returned in a Constructor object. Furthermore,
it is possible for original strings to access and modify the fields offset, hashcode,
and value via reflection. For a fully optimized string object, none of these fields can
be accessed. However, this should not cause severe problems because all fields are
declared as private. Code that accesses private fields via reflection should be aware
of possible implementation changes.

• Exception handling: Exceptions that are thrown during the allocation or ini-
tialization of optimized strings are thrown in the context of the factory methods.
However, the programmer expects the exceptions to be thrown in the constructor.
Although the factory method’s code could be placed in the constructor, constructors
are not allowed to return any values. It would still be possible to ignore this restric-
tion and to return the initialized string object anyway, but several parts of the Java
HotSpotTM VM rely on the correct return type information.

• JNI: Although nearly all problems with the JNI were solved by modifying the
method resolution, one problem could not be addressed: the JNI provides the method
AllocObject that allocates an object without invoking its constructor. For opti-
mized string objects, this is no longer possible because the factory methods combine
the object allocation and initialization.

• Rewriting: The rewriting heuristic implemented for the prototype must be ex-
tended to fully comply with the Java specification. It is necessary to parse the
bytecodes and to build a representation where stack management instructions can
be safely reorganized or deleted. These involves more complex operations than the
currently implemented heuristic and might introduce a higher overhead. However,
the overhead should still be negligible in comparison to the total execution time.

• Other architectures and the server compiler: The prototype is only imple-
mented for the IA-32 architecture and the client compiler. It is unlikely that new
problems occur when porting the optimization to other architectures. However,
adding it to server compiler is some effort because of the changes to the layout
helper. Additionally, the server compiler uses several intrinsics to optimize methods
of the class String. These methods might require additional changes.

7.2 Outlook

Although this prototype already achieves a good speedup, some further optimizations are
possible. The optimization ideas discussed in this section differ greatly in their complex-
ity.
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• Helper methods: Some methods of the class String pass the internal character
array to a helper method of another class. Optimized strings do not store the
string characters any longer in a real character array, as described in Chapter 4.1.
Therefore, the characters must be copied to a temporary character array that can be
passed to such methods. This could be optimized by overloading the helper method
so that a string object can be passed as an argument. However, the characters could
then only be accessed via a method, which might still cost some performance.

• Layout helper: The original layout helper is only used for arrays and instances.
For all other objects, the virtual method size() is invoked for the size calculation.
The new layout helper, described in Chapter 4.8, could also be used for nearly all VM
internal data structures. Only for symbolOop objects, it is not possible to use the
current implementation because these objects store their element count as a short
instead of an integer.

• Object transformation: With the removal of the field hashcode, string objects
have the same size and memory layout as character arrays. This allows a simple
object transformation from character arrays to string objects and vice versa. If a
string is initialized with a character array that is no longer needed, the character
array could be transformed into the string object. It would also be possible to
implement a typecast from one type to the other. However, a programmer could
destroy the immutability of string objects with such a typecast.

• Lazy array initialization: The characters of optimized string objects do not need
to be initialized with a default value because the factory method initializes all char-
acters anyway. A similar approach could be used for array allocation. Currently, all
array elements are initialized with a default value, even if later instructions overwrite
the default content. An optimization for the JIT compiler could be implemented to
detect arrays where the initialization with the default values can be safely omitted.

• Stringcopy: Since it is no longer possible to use the method Sys-

tem.arraycopy() for copying characters from or to an optimized string, the
three methods String.stringToStringCopy(), String.stringToCharCopy() and
String.charToStringCopy() were introduced (see Chapter 4.10). These methods
share most of its code with the very general method System.arraycopy(). A
speedup might be achieved by implementing an intrinsic method that is specialized
on copying characters.
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